Is there a way to use the numpy.percentile function to compute weighted percentile? Or is anyone aware of an alternative python function to compute weighted percentile?
thanks!
Here is the code I use. It's not an optimal one (which I'm unable to write with numpy
), but still much faster and more reliable than accepted solution
def weighted_quantile(values, quantiles, sample_weight=None,
values_sorted=False, old_style=False):
""" Very close to numpy.percentile, but supports weights.
NOTE: quantiles should be in [0, 1]!
:param values: numpy.array with data
:param quantiles: array-like with many quantiles needed
:param sample_weight: array-like of the same length as `array`
:param values_sorted: bool, if True, then will avoid sorting of
initial array
:param old_style: if True, will correct output to be consistent
with numpy.percentile.
:return: numpy.array with computed quantiles.
"""
values = np.array(values)
quantiles = np.array(quantiles)
if sample_weight is None:
sample_weight = np.ones(len(values))
sample_weight = np.array(sample_weight)
assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \
'quantiles should be in [0, 1]'
if not values_sorted:
sorter = np.argsort(values)
values = values[sorter]
sample_weight = sample_weight[sorter]
weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight
if old_style:
# To be convenient with numpy.percentile
weighted_quantiles -= weighted_quantiles[0]
weighted_quantiles /= weighted_quantiles[-1]
else:
weighted_quantiles /= np.sum(sample_weight)
return np.interp(quantiles, weighted_quantiles, values)
Examples:
weighted_quantile([1, 2, 9, 3.2, 4], [0.0, 0.5, 1.])
array([ 1. , 3.2, 9. ])
weighted_quantile([1, 2, 9, 3.2, 4], [0.0, 0.5, 1.], sample_weight=[2, 1, 2, 4, 1])
array([ 1. , 3.2, 9. ])