As almost everyone is aware when they first look at threading in Python, there is the GIL that makes life miserable for people who actually want to do processing in parallel - or at least give it a chance.
I am currently looking at implementing something like the Reactor pattern. Effectively I want to listen for incoming socket connections on one thread-like, and when someone tries to connect, accept that connection and pass it along to another thread-like for processing.
I'm not (yet) sure what kind of load I might be facing. I know there is currently setup a 2MB cap on incoming messages. Theoretically we could get thousands per second (though I don't know if practically we've seen anything like that). The amount of time spent processing a message isn't terribly important, though obviously quicker would be better.
I was looking into the Reactor pattern, and developed a small example using the multiprocessing
library that (at least in testing) seems to work just fine. However, now/soon we'll have the asyncio library available, which would handle the event loop for me.
Is there anything that could bite me by combining asyncio
and multiprocessing
?
You should be able to safely combine asyncio
and multiprocessing
without too much trouble, though you shouldn't be using multiprocessing
directly. The cardinal sin of asyncio
(and any other event-loop based asynchronous framework) is blocking the event loop. If you try to use multiprocessing
directly, any time you block to wait for a child process, you're going to block the event loop. Obviously, this is bad.
The simplest way to avoid this is to use BaseEventLoop.run_in_executor
to execute a function in a concurrent.futures.ProcessPoolExecutor
. ProcessPoolExecutor
is a process pool implemented using multiprocessing.Process
, but asyncio
has built-in support for executing a function in it without blocking the event loop. Here's a simple example:
import time
import asyncio
from concurrent.futures import ProcessPoolExecutor
def blocking_func(x):
time.sleep(x) # Pretend this is expensive calculations
return x * 5
@asyncio.coroutine
def main():
#pool = multiprocessing.Pool()
#out = pool.apply(blocking_func, args=(10,)) # This blocks the event loop.
executor = ProcessPoolExecutor()
out = yield from loop.run_in_executor(executor, blocking_func, 10) # This does not
print(out)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
For the majority of cases, this is function alone is good enough. If you find yourself needing other constructs from multiprocessing
, like Queue
, Event
, Manager
, etc., there is a third-party library called aioprocessing
(full disclosure: I wrote it), that provides asyncio
-compatible versions of all the multiprocessing
data structures. Here's an example demoing that:
import time
import asyncio
import aioprocessing
import multiprocessing
def func(queue, event, lock, items):
with lock:
event.set()
for item in items:
time.sleep(3)
queue.put(item+5)
queue.close()
@asyncio.coroutine
def example(queue, event, lock):
l = [1,2,3,4,5]
p = aioprocessing.AioProcess(target=func, args=(queue, event, lock, l))
p.start()
while True:
result = yield from queue.coro_get()
if result is None:
break
print("Got result {}".format(result))
yield from p.coro_join()
@asyncio.coroutine
def example2(queue, event, lock):
yield from event.coro_wait()
with (yield from lock):
yield from queue.coro_put(78)
yield from queue.coro_put(None) # Shut down the worker
if __name__ == "__main__":
loop = asyncio.get_event_loop()
queue = aioprocessing.AioQueue()
lock = aioprocessing.AioLock()
event = aioprocessing.AioEvent()
tasks = [
asyncio.async(example(queue, event, lock)),
asyncio.async(example2(queue, event, lock)),
]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()