Dead simple example of using Multiprocessing Queue, Pool and Locking

thclpr picture thclpr · Jan 2, 2014 · Viewed 181k times · Source

I tried to read the documentation at http://docs.python.org/dev/library/multiprocessing.html but I'm still struggling with multiprocessing Queue, Pool and Locking. And for now I was able to build the example below.

Regarding Queue and Pool, I'm not sure if I understood the concept in the right way, so correct me if I'm wrong. What I'm trying to achieve is to process 2 requests at time ( data list have 8 in this example ) so, what should I use? Pool to create 2 processes that can handle two different queues ( 2 at max ) or should I just use Queue to process 2 inputs each time? The lock would be to print the outputs correctly.

import multiprocessing
import time

data = (['a', '2'], ['b', '4'], ['c', '6'], ['d', '8'],
        ['e', '1'], ['f', '3'], ['g', '5'], ['h', '7']
)


def mp_handler(var1):
    for indata in var1:
        p = multiprocessing.Process(target=mp_worker, args=(indata[0], indata[1]))
        p.start()


def mp_worker(inputs, the_time):
    print " Processs %s\tWaiting %s seconds" % (inputs, the_time)
    time.sleep(int(the_time))
    print " Process %s\tDONE" % inputs

if __name__ == '__main__':
    mp_handler(data)

Answer

Velimir Mlaker picture Velimir Mlaker · Jan 2, 2014

The best solution for your problem is to utilize a Pool. Using Queues and having a separate "queue feeding" functionality is probably overkill.

Here's a slightly rearranged version of your program, this time with only 2 processes coralled in a Pool. I believe it's the easiest way to go, with minimal changes to original code:

import multiprocessing
import time

data = (
    ['a', '2'], ['b', '4'], ['c', '6'], ['d', '8'],
    ['e', '1'], ['f', '3'], ['g', '5'], ['h', '7']
)

def mp_worker((inputs, the_time)):
    print " Processs %s\tWaiting %s seconds" % (inputs, the_time)
    time.sleep(int(the_time))
    print " Process %s\tDONE" % inputs

def mp_handler():
    p = multiprocessing.Pool(2)
    p.map(mp_worker, data)

if __name__ == '__main__':
    mp_handler()

Note that mp_worker() function now accepts a single argument (a tuple of the two previous arguments) because the map() function chunks up your input data into sublists, each sublist given as a single argument to your worker function.

Output:

Processs a  Waiting 2 seconds
Processs b  Waiting 4 seconds
Process a   DONE
Processs c  Waiting 6 seconds
Process b   DONE
Processs d  Waiting 8 seconds
Process c   DONE
Processs e  Waiting 1 seconds
Process e   DONE
Processs f  Waiting 3 seconds
Process d   DONE
Processs g  Waiting 5 seconds
Process f   DONE
Processs h  Waiting 7 seconds
Process g   DONE
Process h   DONE

Edit as per @Thales comment below:

If you want "a lock for each pool limit" so that your processes run in tandem pairs, ala:

A waiting B waiting | A done , B done | C waiting , D waiting | C done, D done | ...

then change the handler function to launch pools (of 2 processes) for each pair of data:

def mp_handler():
    subdata = zip(data[0::2], data[1::2])
    for task1, task2 in subdata:
        p = multiprocessing.Pool(2)
        p.map(mp_worker, (task1, task2))

Now your output is:

 Processs a Waiting 2 seconds
 Processs b Waiting 4 seconds
 Process a  DONE
 Process b  DONE
 Processs c Waiting 6 seconds
 Processs d Waiting 8 seconds
 Process c  DONE
 Process d  DONE
 Processs e Waiting 1 seconds
 Processs f Waiting 3 seconds
 Process e  DONE
 Process f  DONE
 Processs g Waiting 5 seconds
 Processs h Waiting 7 seconds
 Process g  DONE
 Process h  DONE