Iterative Closest Point (ICP) implementation on python

Harry R. picture Harry R. · Nov 21, 2013 · Viewed 28.2k times · Source

I have been searching for an implementation of the ICP algorithm in python lately with no result.

According to wikipedia article http://en.wikipedia.org/wiki/Iterative_closest_point, the algorithm steps are:

  • Associate points by the nearest neighbor criteria (for each point in one point cloud find the closest point in the second point cloud).

  • Estimate transformation parameters (rotation and translation) using a mean square cost function (the transform would align best each point to its match found in the previous step).

  • Transform the points using the estimated parameters.

  • Iterate (re-associate the points and so on).

Well, I know that ICP is a very useful algorithm and it is used in a variety of applications. However I could not find any built in solution in Python. Am, I missing anything here?

Answer

Harry R. picture Harry R. · Nov 22, 2013

Finally, I managed to write my own implementation of ICP in Python, using the sklearn and opencv libraries.

The function takes two datasets, an initial relative pose estimation and the desired number of iterations. It returns a transformation matrix that transforms the first dataset to the second.

Enjoy!

 import cv2
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.neighbors import NearestNeighbors


def icp(a, b, init_pose=(0,0,0), no_iterations = 13):
    '''
    The Iterative Closest Point estimator.
    Takes two cloudpoints a[x,y], b[x,y], an initial estimation of
    their relative pose and the number of iterations
    Returns the affine transform that transforms
    the cloudpoint a to the cloudpoint b.
    Note:
        (1) This method works for cloudpoints with minor
        transformations. Thus, the result depents greatly on
        the initial pose estimation.
        (2) A large number of iterations does not necessarily
        ensure convergence. Contrarily, most of the time it
        produces worse results.
    '''

    src = np.array([a.T], copy=True).astype(np.float32)
    dst = np.array([b.T], copy=True).astype(np.float32)

    #Initialise with the initial pose estimation
    Tr = np.array([[np.cos(init_pose[2]),-np.sin(init_pose[2]),init_pose[0]],
                   [np.sin(init_pose[2]), np.cos(init_pose[2]),init_pose[1]],
                   [0,                    0,                   1          ]])

    src = cv2.transform(src, Tr[0:2])

    for i in range(no_iterations):
        #Find the nearest neighbours between the current source and the
        #destination cloudpoint
        nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto',
                                warn_on_equidistant=False).fit(dst[0])
        distances, indices = nbrs.kneighbors(src[0])

        #Compute the transformation between the current source
        #and destination cloudpoint
        T = cv2.estimateRigidTransform(src, dst[0, indices.T], False)
        #Transform the previous source and update the
        #current source cloudpoint
        src = cv2.transform(src, T)
        #Save the transformation from the actual source cloudpoint
        #to the destination
        Tr = np.dot(Tr, np.vstack((T,[0,0,1])))
    return Tr[0:2]

Call it like this:

#Create the datasets
ang = np.linspace(-np.pi/2, np.pi/2, 320)
a = np.array([ang, np.sin(ang)])
th = np.pi/2
rot = np.array([[np.cos(th), -np.sin(th)],[np.sin(th), np.cos(th)]])
b = np.dot(rot, a) + np.array([[0.2], [0.3]])

#Run the icp
M2 = icp(a, b, [0.1,  0.33, np.pi/2.2], 30)

#Plot the result
src = np.array([a.T]).astype(np.float32)
res = cv2.transform(src, M2)
plt.figure()
plt.plot(b[0],b[1])
plt.plot(res[0].T[0], res[0].T[1], 'r.')
plt.plot(a[0], a[1])
plt.show()