Pandas conditional creation of a series/dataframe column

user7289 picture user7289 · Nov 11, 2013 · Viewed 480k times · Source

I have a dataframe along the lines of the below:

    Type       Set
1    A          Z
2    B          Z           
3    B          X
4    C          Y

I want to add another column to the dataframe (or generate a series) of the same length as the dataframe (equal number of records/rows) which sets a colour 'green' if Set == 'Z' and 'red' if Set equals anything else.

What's the best way to do this?

Answer

unutbu picture unutbu · Nov 11, 2013

If you only have two choices to select from:

df['color'] = np.where(df['Set']=='Z', 'green', 'red')

For example,

import pandas as pd
import numpy as np

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)

yields

  Set Type  color
0   Z    A  green
1   Z    B  green
2   X    B    red
3   Y    C    red

If you have more than two conditions then use np.select. For example, if you want color to be

  • yellow when (df['Set'] == 'Z') & (df['Type'] == 'A')
  • otherwise blue when (df['Set'] == 'Z') & (df['Type'] == 'B')
  • otherwise purple when (df['Type'] == 'B')
  • otherwise black,

then use

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
conditions = [
    (df['Set'] == 'Z') & (df['Type'] == 'A'),
    (df['Set'] == 'Z') & (df['Type'] == 'B'),
    (df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)

which yields

  Set Type   color
0   Z    A  yellow
1   Z    B    blue
2   X    B  purple
3   Y    C   black