My own OCR-program in Python

kame picture kame · Jan 2, 2010 · Viewed 21.7k times · Source

I am still a beginner but I want to write a character-recognition-program. This program isn't ready yet. And I edited a lot, therefor the comments may not match exactly. I will use the 8-connectivity for the connected component labeling.

from PIL import Image
import numpy as np

im = Image.open("D:\\Python26\\PYTHON-PROGRAMME\\bild_schrift.jpg")

w,h = im.size
w = int(w)
h = int(h)

#2D-Array for area
area = []
for x in range(w):
    area.append([])
    for y in range(h):
        area[x].append(2) #number 0 is white, number 1 is black

#2D-Array for letter
letter = []
for x in range(50):
    letter.append([])
    for y in range(50):
        letter[x].append(0)

#2D-Array for label
label = []
for x in range(50):
    label.append([])
    for y in range(50):
        label[x].append(0)

#image to number conversion
pix = im.load()
threshold = 200
for x in range(w):
    for y in range(h):
        aaa = pix[x, y]
        bbb = aaa[0] + aaa[1] + aaa[2] #total value
        if bbb<=threshold:
            area[x][y] = 1
        if bbb>threshold:
            area[x][y] = 0
np.set_printoptions(threshold='nan', linewidth=10)

#matrix transponation
ccc = np.array(area) 
area = ccc.T #better solution?

#find all black pixel and set temporary label numbers
i=1
for x in range(40): # width (later)
    for y in range(40): # heigth (later)
        if area[x][y]==1:
            letter[x][y]=1
            label[x][y]=i
            i += 1

#connected components labeling
for x in range(40): # width (later)
    for y in range(40): # heigth (later)
        if area[x][y]==1:
            label[x][y]=i
            #if pixel has neighbour:
            if area[x][y+1]==1:
                #pixel and neighbour get the lowest label             
                pass # tomorrows work
            if area[x+1][y]==1:
                #pixel and neighbour get the lowest label             
                pass # tomorrows work            
            #should i also compare pixel and left neighbour?

#find width of the letter
#find height of the letter
#find the middle of the letter
#middle = [width/2][height/2] #?
#divide letter into 30 parts --> 5 x 6 array

#model letter
#letter A-Z, a-z, 0-9 (maybe more)

#compare each of the 30 parts of the letter with all model letters
#make a weighting

#print(letter)

im.save("D:\\Python26\\PYTHON-PROGRAMME\\bild2.jpg")
print('done')

Answer

jbochi picture jbochi · Jan 2, 2010

OCR is not an easy task indeed. That's why text CAPTCHAs still work :)

To talk only about the letter extraction and not the pattern recognition, the technique you are using to separate the letters is called Connected Component Labeling. Since you are asking for a more efficient way to do this, try to implement the two-pass algorithm that's described in this article. Another description can be found in the article Blob extraction.

EDIT: Here's the implementation for the algorithm that I have suggested:

import sys
from PIL import Image, ImageDraw

class Region():
    def __init__(self, x, y):
        self._pixels = [(x, y)]
        self._min_x = x
        self._max_x = x
        self._min_y = y
        self._max_y = y

    def add(self, x, y):
        self._pixels.append((x, y))
        self._min_x = min(self._min_x, x)
        self._max_x = max(self._max_x, x)
        self._min_y = min(self._min_y, y)
        self._max_y = max(self._max_y, y)

    def box(self):
        return [(self._min_x, self._min_y), (self._max_x, self._max_y)]

def find_regions(im):
    width, height  = im.size
    regions = {}
    pixel_region = [[0 for y in range(height)] for x in range(width)]
    equivalences = {}
    n_regions = 0
    #first pass. find regions.
    for x in xrange(width):
        for y in xrange(height):
            #look for a black pixel
            if im.getpixel((x, y)) == (0, 0, 0, 255): #BLACK
                # get the region number from north or west
                # or create new region
                region_n = pixel_region[x-1][y] if x > 0 else 0
                region_w = pixel_region[x][y-1] if y > 0 else 0

                max_region = max(region_n, region_w)

                if max_region > 0:
                    #a neighbour already has a region
                    #new region is the smallest > 0
                    new_region = min(filter(lambda i: i > 0, (region_n, region_w)))
                    #update equivalences
                    if max_region > new_region:
                        if max_region in equivalences:
                            equivalences[max_region].add(new_region)
                        else:
                            equivalences[max_region] = set((new_region, ))
                else:
                    n_regions += 1
                    new_region = n_regions

                pixel_region[x][y] = new_region

    #Scan image again, assigning all equivalent regions the same region value.
    for x in xrange(width):
        for y in xrange(height):
                r = pixel_region[x][y]
                if r > 0:
                    while r in equivalences:
                        r = min(equivalences[r])

                    if not r in regions:
                        regions[r] = Region(x, y)
                    else:
                        regions[r].add(x, y)

    return list(regions.itervalues())

def main():
    im = Image.open(r"c:\users\personal\py\ocr\test.png")
    regions = find_regions(im)
    draw = ImageDraw.Draw(im)
    for r in regions:
        draw.rectangle(r.box(), outline=(255, 0, 0))
    del draw 
    #im.show()
    output = file("output.png", "wb")
    im.save(output)
    output.close()

if __name__ == "__main__":
    main()

It's not 100% perfect, but since you are doing this only for learning purposes, it may be a good starting point. With the bounding box of each character you can now use a neural network as others have suggested here.