sklearn plot confusion matrix with labels

hmghaly picture hmghaly · Oct 7, 2013 · Viewed 181.1k times · Source

I want to plot a confusion matrix to visualize the classifer's performance, but it shows only the numbers of the labels, not the labels themselves:

from sklearn.metrics import confusion_matrix
import pylab as pl
y_test=['business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business', 'business']

pred=array(['health', 'business', 'business', 'business', 'business',
       'business', 'health', 'health', 'business', 'business', 'business',
       'business', 'business', 'business', 'business', 'business',
       'health', 'health', 'business', 'health'], 
      dtype='|S8')

cm = confusion_matrix(y_test, pred)
pl.matshow(cm)
pl.title('Confusion matrix of the classifier')
pl.colorbar()
pl.show()

How can I add the labels (health, business..etc) to the confusion matrix?

Answer

akilat90 picture akilat90 · Dec 29, 2017

UPDATE:

In scikit-learn 0.22, there's a new feature to plot the confusion matrix directly.

See the documentation: sklearn.metrics.plot_confusion_matrix


OLD ANSWER:

I think it's worth mentioning the use of seaborn.heatmap here.

import seaborn as sns
import matplotlib.pyplot as plt     

ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells

# labels, title and ticks
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels'); 
ax.set_title('Confusion Matrix'); 
ax.xaxis.set_ticklabels(['business', 'health']); ax.yaxis.set_ticklabels(['health', 'business']);

enter image description here