I have some points and I am trying to fit curve for this points. I know that there exist scipy.optimize.curve_fit
function, but I do not understand documentation, i.e how to use this function.
My points: np.array([(1, 1), (2, 4), (3, 1), (9, 3)])
Can anybody explain how to do that?
I suggest you to start with simple polynomial fit, scipy.optimize.curve_fit
tries to fit a function f
that you must know to a set of points.
This is a simple 3 degree polynomial fit using numpy.polyfit
and poly1d
, the first performs a least squares polynomial fit and the second calculates the new points:
import numpy as np
import matplotlib.pyplot as plt
points = np.array([(1, 1), (2, 4), (3, 1), (9, 3)])
# get x and y vectors
x = points[:,0]
y = points[:,1]
# calculate polynomial
z = np.polyfit(x, y, 3)
f = np.poly1d(z)
# calculate new x's and y's
x_new = np.linspace(x[0], x[-1], 50)
y_new = f(x_new)
plt.plot(x,y,'o', x_new, y_new)
plt.xlim([x[0]-1, x[-1] + 1 ])
plt.show()