I'm not sure how to do this and I was given an example, spectrogram e.g. but this is in 2D.
I have code here that generates a mix of frequencies and I can pick these out in the fft, how may I see these in a spectrogram? I appreciate that the frequencies in my example don't change over time; so does this mean I'll see a straight line across the spectrogram?
my code and the output image:
# create a wave with 1Mhz and 0.5Mhz frequencies
dt = 2e-9
t = np.arange(0, 10e-6, dt)
y = np.cos(2 * pi * 1e6 * t) + (np.cos(2 * pi * 2e6 *t) * np.cos(2 * pi * 2e6 * t))
y *= np.hanning(len(y))
yy = np.concatenate((y, ([0] * 10 * len(y))))
# FFT of this
Fs = 1 / dt # sampling rate, Fs = 500MHz = 1/2ns
n = len(yy) # length of the signal
k = np.arange(n)
T = n / Fs
frq = k / T # two sides frequency range
frq = frq[range(n / 2)] # one side frequency range
Y = fft(yy) / n # fft computing and normalization
Y = Y[range(n / 2)] / max(Y[range(n / 2)])
# plotting the data
subplot(3, 1, 1)
plot(t * 1e3, y, 'r')
xlabel('Time (micro seconds)')
ylabel('Amplitude')
grid()
# plotting the spectrum
subplot(3, 1, 2)
plot(frq[0:600], abs(Y[0:600]), 'k')
xlabel('Freq (Hz)')
ylabel('|Y(freq)|')
grid()
# plotting the specgram
subplot(3, 1, 3)
Pxx, freqs, bins, im = specgram(y, NFFT=512, Fs=Fs, noverlap=10)
show()
What you have is technically correct, but you just need to look at a signal with an interesting spectrogram. For that, you need the frequency to vary with time. (And for that to happen, you need many oscillations, since it takes a few oscillations to establish a frequency, and then you need many of these to have the frequency change with time in an interesting way.)
Below I've modified you code as little as possible to get a frequency that does something interesting (fscale
just ramps the frequency over time). I'm posting all the code to get this to work, but I only change three of the top four lines.
# create a wave with 1Mhz and 0.5Mhz frequencies
dt = 40e-9
t = np.arange(0, 1000e-6, dt)
fscale = t/max(t)
y = np.cos(2 * pi * 1e6 * t*fscale) + (np.cos(2 * pi * 2e6 *t*fscale) * np.cos(2 * pi * 2e6 * t*fscale))
y *= np.hanning(len(y))
yy = np.concatenate((y, ([0] * 10 * len(y))))
# FFT of this
Fs = 1 / dt # sampling rate, Fs = 500MHz = 1/2ns
n = len(yy) # length of the signal
k = np.arange(n)
T = n / Fs
frq = k / T # two sides frequency range
frq = frq[range(n / 2)] # one side frequency range
Y = fft(yy) / n # fft computing and normalization
Y = Y[range(n / 2)] / max(Y[range(n / 2)])
# plotting the data
subplot(3, 1, 1)
plot(t * 1e3, y, 'r')
xlabel('Time (micro seconds)')
ylabel('Amplitude')
grid()
# plotting the spectrum
subplot(3, 1, 2)
plot(frq[0:600], abs(Y[0:600]), 'k')
xlabel('Freq (Hz)')
ylabel('|Y(freq)|')
grid()
# plotting the specgram
subplot(3, 1, 3)
Pxx, freqs, bins, im = specgram(y, NFFT=512, Fs=Fs, noverlap=10)
show()
Also, note here that only the spectrogram is useful. If you can see a good waveform or spectra, the spectrogram probably won't be interesting: 1) if the waveform is clear you probably don't have enough data and time over which the frequency is both well defined and changes enough to be interesting; 2) if the full spectra is clear, you probably don't have enough variation in frequency for the spectrogram, since the spectrum is basically just an average of what you see changing with time in the spectrogram.
If you really want to see the spectrogram of your original signal, you just need to zoom on the y-axis to see the peaks you are expecting (note that the spectrogram y-axis is 2.5e8, must larger than in your spectrum):