I am reading the Python cookbook at the moment and am currently looking at generators. I'm finding it hard to get my head round.
As I come from a Java background, is there a Java equivalent? The book was speaking about 'Producer / Consumer', however when I hear that I think of threading.
What is a generator and why would you use it? Without quoting any books, obviously (unless you can find a decent, simplistic answer direct from a book). Perhaps with examples, if you're feeling generous!
Note: this post assumes Python 3.x syntax.†
A generator is simply a function which returns an object on which you can call next
, such that for every call it returns some value, until it raises a StopIteration
exception, signaling that all values have been generated. Such an object is called an iterator.
Normal functions return a single value using return
, just like in Java. In Python, however, there is an alternative, called yield
. Using yield
anywhere in a function makes it a generator. Observe this code:
>>> def myGen(n):
... yield n
... yield n + 1
...
>>> g = myGen(6)
>>> next(g)
6
>>> next(g)
7
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
As you can see, myGen(n)
is a function which yields n
and n + 1
. Every call to next
yields a single value, until all values have been yielded. for
loops call next
in the background, thus:
>>> for n in myGen(6):
... print(n)
...
6
7
Likewise there are generator expressions, which provide a means to succinctly describe certain common types of generators:
>>> g = (n for n in range(3, 5))
>>> next(g)
3
>>> next(g)
4
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
Note that generator expressions are much like list comprehensions:
>>> lc = [n for n in range(3, 5)]
>>> lc
[3, 4]
Observe that a generator object is generated once, but its code is not run all at once. Only calls to next
actually execute (part of) the code. Execution of the code in a generator stops once a yield
statement has been reached, upon which it returns a value. The next call to next
then causes execution to continue in the state in which the generator was left after the last yield
. This is a fundamental difference with regular functions: those always start execution at the "top" and discard their state upon returning a value.
There are more things to be said about this subject. It is e.g. possible to send
data back into a generator (reference). But that is something I suggest you do not look into until you understand the basic concept of a generator.
Now you may ask: why use generators? There are a couple of good reasons:
Generators allow for a natural way to describe infinite streams. Consider for example the Fibonacci numbers:
>>> def fib():
... a, b = 0, 1
... while True:
... yield a
... a, b = b, a + b
...
>>> import itertools
>>> list(itertools.islice(fib(), 10))
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
This code uses itertools.islice
to take a finite number of elements from an infinite stream. You are advised to have a good look at the functions in the itertools
module, as they are essential tools for writing advanced generators with great ease.
† About Python <=2.6: in the above examples next
is a function which calls the method __next__
on the given object. In Python <=2.6 one uses a slightly different technique, namely o.next()
instead of next(o)
. Python 2.7 has next()
call .next
so you need not use the following in 2.7:
>>> g = (n for n in range(3, 5))
>>> g.next()
3