What is the most efficient way to organise the following pandas Dataframe:
data =
Position Letter
1 a
2 b
3 c
4 d
5 e
into a dictionary like alphabet[1 : 'a', 2 : 'b', 3 : 'c', 4 : 'd', 5 : 'e']
?
In [9]: pd.Series(df.Letter.values,index=df.Position).to_dict()
Out[9]: {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
Speed comparion (using Wouter's method)
In [6]: df = pd.DataFrame(randint(0,10,10000).reshape(5000,2),columns=list('AB'))
In [7]: %timeit dict(zip(df.A,df.B))
1000 loops, best of 3: 1.27 ms per loop
In [8]: %timeit pd.Series(df.A.values,index=df.B).to_dict()
1000 loops, best of 3: 987 us per loop