I have added text to a plot, coded in each line, and then adjusted it look decent, increase or decrease the width, or change the placement. However, is there a way to have Python know where you want the text and how you want it set? Then I could add the text and Python would work out the details.
For example, take a look at the image below:
In the figure, I have 3 lines of text in the upper left corner and one line above the line of the plot.
I had to adjust the 3 lines to get a decent spacing. This wasnt a difficult task but it would be easy if I could say here is the text, here is the location, and then Python stacks it with proper spacing.
For the lone line, I had to make adjustments so it wasn't on the line and lower the line. For this case, is is possible to tell python I would like the text above the plot and 80% down the line?
I am used to LaTeX
where I can make this adjustments without hard coding the coordinates. The advantage are
(1) if I want to change the location, I can change the percentage shift and not the coordinate.
(2) if the line is angled, the text will adjust to the line.
The advantage to (2) is that I am trying to put text on the top portion of the figure that slopes upward with the line.
Can this be done or am I asking to much? If so, how do I do this?
Here is the code that implements the figure:
import numpy as np
import pylab
r1 = 1 # AU Earth
r2 = 1.524 # AU Mars
deltanu = 75 * np.pi / 180 # angle in radians
mu = 38.86984154054163
c = np.sqrt(r1 ** 2 + r2 ** 2 - 2 * r1 * r2 * np.cos(deltanu))
s = (r1 + r2 + c) / 2
am = s / 2
def g(a):
alphag = 2* np.pi - 2 * np.arcsin(np.sqrt(s / (2 * a)))
return (np.sqrt(a ** 3 / mu)
* (alphag - betag - (np.sin(alphag) - np.sin(betag))))
def f(a):
alpha = 2 * np.arcsin(np.sqrt(s / (2 * a)))
beta = 2 * np.arcsin(np.sqrt((s - c) / (2 * a)))
return (np.sqrt(a **3 / mu) * (alpha - betag - (np.sin(alpha)
- np.sin(betag))))
betag = -2 * np.arcsin(np.sqrt((s - c) / (2 * a)))
a = np.linspace(am, 2, 500000)
a = np.linspace(am, 2, 500000)
fig = pylab.figure()
ax = fig.add_subplot(111)
ax.plot(a, f(a), color = '#000000')
ax.plot(a, g(a), color = '#000000')
pylab.xlim((0.9, 2))
pylab.ylim((0, 2))
pylab.xlabel('Semi-major Axis $a$ in AU')
pylab.ylabel('Time of Flight in Years')
pylab.text(1, 1.8, '$r_1 = 1.0$ AU', fontsize = 11, color = 'r')
pylab.text(1, 1.7, '$r_2 = 1.524$ AU', fontsize = 11, color = 'r')
pylab.text(1, 1.6, '$\\Delta \\nu = 75^{\\circ}$', fontsize = 11,
color = 'r')
pylab.text(1.75, 0.35, '$\\alpha = \\alpha_0$', fontsize = 11,
color = 'r')
pylab.savefig('lamberttransferties.eps', format = 'eps')
pylab.show()
You can use line separators \n
:
pylab.text(1, 1.5, '$r_1 = 1.0$ AU\n' +\
'$r_2 = 1.524$ AU\n' +\
'$\\Delta \\nu = 75^{\\circ}$', fontsize = 11, color = 'r')
pylab.text()
uses data coordinates by default, but you can use relative positions (0,0)
to the lower-left and (1,1)
to the upper-right, passing the parameter transform
. See this example:
pylab.text(0.6, 0.75, 'using axis coords', transform=ax.transAxes)
The parameters: verticalalignment
and horizontalalignment
can also help you tremendously. Suppose you want to place a texts at the very corners:
pylab.text(1.,1.,'top-right', transform=ax.transAxes,
horizontalalignment='right', verticalalignment='top')
pylab.text(0.,0.,'bottom-left', transform=ax.transAxes,
horizontalalignment='left', verticalalignment='bottom')
To automatically calculate an angle to the text depending on your data you can do the following approach:
ax.get_data_ratio()
OBS: not needed if ax.axis('scaled')
is used, for exampleThis algorithm can be implemented as follows:
def rtext(line,x,y,s, **kwargs):
from scipy.optimize import curve_fit
xdata,ydata = line.get_data()
dist = np.sqrt((x-xdata)**2 + (y-ydata)**2)
dmin = dist.min()
TOL_to_avoid_rotation = 0.3
if dmin > TOL_to_avoid_rotation:
r = 0.
else:
index = dist.argmin()
xs = xdata[ [index-2,index-1,index,index+1,index+2] ]
ys = ydata[ [index-2,index-1,index,index+1,index+2] ]
def f(x,a0,a1,a2,a3):
return a0 + a1*x + a2*x**2 + a3*x**3
popt, pcov = curve_fit(f, xs, ys, p0=(1,1,1,1))
a0,a1,a2,a3 = popt
ax = pylab.gca()
derivative = (a1 + 2*a2*x + 3*a3*x**2)
derivative /= ax.get_data_ratio()
r = np.arctan( derivative )
return pylab.text(x, y, s, rotation=np.rad2deg(r), **kwargs)
The following test example shows how to use it:
ax = pylab.subplot(111)
thetas = np.linspace(0,6*np.pi,1000)
i = np.arange(len(thetas))
xdata = (1. + (3.-1.)*i/len(thetas))*np.cos(thetas)
ydata = (1. + (3.-1.)*i/len(thetas))*np.sin(thetas)
ax.plot(xdata, ydata, color = 'b')
pylab.xlabel('x')
pylab.ylabel('y')
for x, y in zip(xdata,ydata)[::25]:
rtext(ax.lines[0], x, y,
'$\\alpha = \\alpha_0$', fontsize = 14, color = 'r',
horizontalalignment='center', verticalalignment='center')
Changing verticalalignment='bottom'