I know I could implement a root mean squared error function like this:
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
What I'm looking for if this rmse function is implemented in a library somewhere, perhaps in scipy or scikit-learn?
sklearn >= 0.22.0
sklearn.metrics
has a mean_squared_error
function with a squared
kwarg (defaults to True
). Setting squared
to False
will return the RMSE.
from sklearn.metrics import mean_squared_error
rms = mean_squared_error(y_actual, y_predicted, squared=False)
sklearn < 0.22.0
sklearn.metrics
has a mean_squared_error
function. The RMSE is just the square root of whatever it returns.
from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(y_actual, y_predicted))