I have a data frame with alpha-numeric keys which I want to save as a csv and read back later. For various reasons I need to explicitly read this key column as a string format, I have keys which are strictly numeric or even worse, things like: 1234E5 which Pandas interprets as a float. This obviously makes the key completely useless.
The problem is when I specify a string dtype for the data frame or any column of it I just get garbage back. I have some example code here:
df = pd.DataFrame(np.random.rand(2,2),
index=['1A', '1B'],
columns=['A', 'B'])
df.to_csv(savefile)
The data frame looks like:
A B
1A 0.209059 0.275554
1B 0.742666 0.721165
Then I read it like so:
df_read = pd.read_csv(savefile, dtype=str, index_col=0)
and the result is:
A B
B ( <
Is this a problem with my computer, or something I'm doing wrong here, or just a bug?
Update: this has been fixed: from 0.11.1 you passing str
/np.str
will be equivalent to using object
.
Use the object dtype:
In [11]: pd.read_csv('a', dtype=object, index_col=0)
Out[11]:
A B
1A 0.35633069074776547 0.745585398803751
1B 0.20037376323337375 0.013921830784260236
or better yet, just don't specify a dtype:
In [12]: pd.read_csv('a', index_col=0)
Out[12]:
A B
1A 0.356331 0.745585
1B 0.200374 0.013922
but bypassing the type sniffer and truly returning only strings requires a hacky use of converters
:
In [13]: pd.read_csv('a', converters={i: str for i in range(100)})
Out[13]:
A B
1A 0.35633069074776547 0.745585398803751
1B 0.20037376323337375 0.013921830784260236
where 100
is some number equal or greater than your total number of columns.
It's best to avoid the str dtype, see for example here.