Getting the average of a certain hour on weekdays over several years in a pandas dataframe

Markus W picture Markus W · Jun 6, 2013 · Viewed 9.9k times · Source

I have an hourly dataframe in the following format over several years:

Date/Time            Value
01.03.2010 00:00:00  60
01.03.2010 01:00:00  50
01.03.2010 02:00:00  52
01.03.2010 03:00:00  49
.
.
.
31.12.2013 23:00:00  77

I would like to average the data so I can get the average of hour 0, hour 1... hour 23 of each of the years.

So the output should look somehow like this:

Year Hour           Avg
2010 00              63
2010 01              55
2010 02              50
.
.
.
2013 22              71
2013 23              80

Does anyone know how to obtain this in pandas?

Answer

Andy Hayden picture Andy Hayden · Jun 6, 2013

Note: Now that Series have the dt accessor it's less important that date is the index, though Date/Time still needs to be a datetime64.

Update: You can do the groupby more directly (without the lambda):

In [21]: df.groupby([df["Date/Time"].dt.year, df["Date/Time"].dt.hour]).mean()
Out[21]:
                     Value
Date/Time Date/Time
2010      0             60
          1             50
          2             52
          3             49

In [22]: res = df.groupby([df["Date/Time"].dt.year, df["Date/Time"].dt.hour]).mean()

In [23]: res.index.names = ["year", "hour"]

In [24]: res
Out[24]:
           Value
year hour
2010 0        60
     1        50
     2        52
     3        49

If it's a datetime64 index you can do:

In [31]: df1.groupby([df1.index.year, df1.index.hour]).mean()
Out[31]:
        Value
2010 0     60
     1     50
     2     52
     3     49

Old answer (will be slower):

Assuming Date/Time was the index* you can use a mapping function in the groupby:

In [11]: year_hour_means = df1.groupby(lambda x: (x.year, x.hour)).mean()

In [12]: year_hour_means
Out[12]:
           Value
(2010, 0)     60
(2010, 1)     50
(2010, 2)     52
(2010, 3)     49

For a more useful index, you could then create a MultiIndex from the tuples:

In [13]: year_hour_means.index = pd.MultiIndex.from_tuples(year_hour_means.index,
                                                           names=['year', 'hour'])

In [14]: year_hour_means
Out[14]:
           Value
year hour
2010 0        60
     1        50
     2        52
     3        49

* if not, then first use set_index:

df1 = df.set_index('Date/Time')