How can I divide a numpy array row by the sum of all values in this row?
This is one example. But I'm pretty sure there is a fancy and much more efficient way of doing this:
import numpy as np
e = np.array([[0., 1.],[2., 4.],[1., 5.]])
for row in xrange(e.shape[0]):
e[row] /= np.sum(e[row])
Result:
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])
Method #1: use None
(or np.newaxis
) to add an extra dimension so that broadcasting will behave:
>>> e
array([[ 0., 1.],
[ 2., 4.],
[ 1., 5.]])
>>> e/e.sum(axis=1)[:,None]
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])
Method #2: go transpose-happy:
>>> (e.T/e.sum(axis=1)).T
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])
(You can drop the axis=
part for conciseness, if you want.)
Method #3: (promoted from Jaime's comment)
Use the keepdims
argument on sum
to preserve the dimension:
>>> e/e.sum(axis=1, keepdims=True)
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])