I am trying to create a term document matrix with NLTK and pandas. I wrote the following function:
def fnDTM_Corpus(xCorpus):
import pandas as pd
'''to create a Term Document Matrix from a NLTK Corpus'''
fd_list = []
for x in range(0, len(xCorpus.fileids())):
fd_list.append(nltk.FreqDist(xCorpus.words(xCorpus.fileids()[x])))
DTM = pd.DataFrame(fd_list, index = xCorpus.fileids())
DTM.fillna(0,inplace = True)
return DTM.T
to run it
import nltk
from nltk.corpus import PlaintextCorpusReader
corpus_root = 'C:/Data/'
newcorpus = PlaintextCorpusReader(corpus_root, '.*')
x = fnDTM_Corpus(newcorpus)
It works well for few small files in the corpus but gives me a MemoryError when I try to run it with a corpus of 4,000 files (of about 2 kb each).
Am I missing something?
I am using a 32 bit python. (am on windows 7, 64-bit OS, Core Quad CPU, 8 GB RAM). Do I really need to use 64 bit for corpus of this size ?
I know the OP wanted to create a tdm in NLTK, but the textmining
package (pip install textmining
) makes it dead simple:
import textmining
# Create some very short sample documents
doc1 = 'John and Bob are brothers.'
doc2 = 'John went to the store. The store was closed.'
doc3 = 'Bob went to the store too.'
# Initialize class to create term-document matrix
tdm = textmining.TermDocumentMatrix()
# Add the documents
tdm.add_doc(doc1)
tdm.add_doc(doc2)
tdm.add_doc(doc3)
# Write matrix file -- cutoff=1 means words in 1+ documents are retained
tdm.write_csv('matrix.csv', cutoff=1)
# Instead of writing the matrix, access its rows directly
for row in tdm.rows(cutoff=1):
print row
Output:
['and', 'the', 'brothers', 'to', 'are', 'closed', 'bob', 'john', 'was', 'went', 'store', 'too']
[1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0]
[0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 2, 0]
[0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1]
Alternatively, one can use pandas and sklearn [source]:
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
docs = ['why hello there', 'omg hello pony', 'she went there? omg']
vec = CountVectorizer()
X = vec.fit_transform(docs)
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())
print(df)
Output:
hello omg pony she there went why
0 1 0 0 0 1 0 1
1 1 1 1 0 0 0 0
2 0 1 0 1 1 1 0