Imagine having 2 numpy arrays:
> A, A.shape = (n,p)
> B, B.shape = (p,p)
Typically p is a smaller number (p <= 200), while n can be arbitrarily large.
I am doing the following:
result = np.diag(A.dot(B).dot(A.T))
As you can see, I am keeping only the n diagonal entries, however there is an intermediate (n x n) array calculated from which only the diagonal entries are kept.
I wish for a function like diag_dot(), which only calculates the diagonal entries of the result and does not allocate the complete memory.
A result would be:
> result = diag_dot(A.dot(B), A.T)
Is there a premade functionality like this and can this be done efficiently without the need for allocating the intermediate (n x n) array?
I think i got it on my own, but nevertheless will share the solution:
since getting only the diagonals of a matrix multiplication
> Z = N.diag(X.dot(Y))
is equivalent to the individual sum of the scalar product of rows of X and columns of Y, the previous statement is equivalent to:
> Z = (X * Y.T).sum(-1)
For the original variables this means:
> result = (A.dot(B) * A).sum(-1)
Please correct me if I am wrong but this should be it ...