TypeError: only integer arrays with one element can be converted to an index

feralvam picture feralvam · Sep 16, 2012 · Viewed 32.3k times · Source

I'm getting the following error when performing recursive feature selection with cross-validation:

Traceback (most recent call last):
  File "/Users/.../srl/main.py", line 32, in <module>
    argident_sys.train_classifier()
  File "/Users/.../srl/identification.py", line 194, in train_classifier
    feat_selector.fit(train_argcands_feats,train_argcands_target)
  File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 298, in fit
    ranking_ = rfe.fit(X[train], y[train]).ranking_
TypeError: only integer arrays with one element can be converted to an index

The code that generates the error is the following:

def train_classifier(self):

    # Get the argument candidates
    argcands = self.get_argcands(self.reader)

    # Extract the necessary features from the argument candidates
    train_argcands_feats = []
    train_argcands_target = []

    for argcand in argcands:
        train_argcands_feats.append(self.extract_features(argcand))
        if argcand["info"]["label"] == "NULL":
            train_argcands_target.append("NULL")
        else:
            train_argcands_target.append("ARG")

    # Transform the features to the format required by the classifier
    self.feat_vectorizer = DictVectorizer()
    train_argcands_feats = self.feat_vectorizer.fit_transform(train_argcands_feats)

    # Transform the target labels to the format required by the classifier
    self.target_names = list(set(train_argcands_target))
    train_argcands_target = [self.target_names.index(target) for target in train_argcands_target]

    ## Train the appropriate supervised model      

    # Recursive Feature Elimination
    self.classifier = LogisticRegression()
    feat_selector = RFECV(estimator=self.classifier, step=1, cv=StratifiedKFold(train_argcands_target, 10))

    feat_selector.fit(train_argcands_feats,train_argcands_target)

    print feat_selector.n_features_
    print feat_selector.support_
    print feat_selector.ranking_
    print feat_selector.cv_scores_

    return

I know I should also perform GridSearch for the parameters of the LogisticRegression classifier, but I don't think that's the source of the error (or is it?).

I should mention that I'm testing with around 50 features, and almost all of them are categoric (that's why I use the DictVectorizer to transform them appropriately).

Any help or guidance you could give me is more than welcome. Thanks!

EDIT

Here's some training data examples:

train_argcands_feats = [{'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'dado', 'head': u'dado', 'head_postag': u'N'}, {'head_lemma': u'postura', 'head': u'postura', 'head_postag': u'N'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'querer', 'head': u'quer', 'head_postag': u'V-FIN'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'participar', 'head': u'participando', 'head_postag': u'V-GER'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'recusar', 'head': u'recusando', 'head_postag': u'V-GER'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'participar', 'head': u'participando', 'head_postag': u'V-GER'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'governo', 'head': u'Governo', 'head_postag': u'N'}, {'head_lemma': u'de', 'head': u'de', 'head_postag': u'PRP'}, {'head_lemma': u'governo', 'head': u'Governo', 'head_postag': u'N'}, {'head_lemma': u'recusar', 'head': u'recusando', 'head_postag': u'V-GER'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'querer', 'head': u'quer', 'head_postag': u'V-FIN'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'muito', 'head': u'Muitas', 'head_postag': u'PRON-DET'}, {'head_lemma': u'prioridade', 'head': u'prioridades', 'head_postag': u'N'}, {'head_lemma': u'com', 'head': u'com', 'head_postag': u'PRP'}, {'head_lemma': u'prioridade', 'head': u'prioridades', 'head_postag': u'N'}]

train_argcands_target = ['NULL', 'ARG', 'ARG', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'ARG', 'ARG', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'ARG', 'NULL', 'NULL']

Answer

feralvam picture feralvam · Sep 17, 2012

I finally got to solve the problem. Two things had to be done:

  1. train_argcands_target is a list and it has to be a numpy array. I'm surprised it worked well before when I just used the estimator directly.
  2. For some reason (I don't know why, yet), it doesn't work either if I use the sparse matrix created by the DictVectorizer. I had to, "manually", transform each feature dictionary to a feature array with just integers representing each feature value. The transformation process is similar to the one I present in the code for the target values.

Thanks to everyone who tried to help!