Could someone explain to me the meaning of @classmethod
and @staticmethod
in python? I need to know the difference and the meaning.
As far as I understand, @classmethod
tells a class that it's a method which should be inherited into subclasses, or... something. However, what's the point of that? Why not just define the class method without adding @classmethod
or @staticmethod
or any @
definitions?
tl;dr: when should I use them, why should I use them, and how should I use them?
Though classmethod
and staticmethod
are quite similar, there's a slight difference in usage for both entities: classmethod
must have a reference to a class object as the first parameter, whereas staticmethod
can have no parameters at all.
class Date(object):
def __init__(self, day=0, month=0, year=0):
self.day = day
self.month = month
self.year = year
@classmethod
def from_string(cls, date_as_string):
day, month, year = map(int, date_as_string.split('-'))
date1 = cls(day, month, year)
return date1
@staticmethod
def is_date_valid(date_as_string):
day, month, year = map(int, date_as_string.split('-'))
return day <= 31 and month <= 12 and year <= 3999
date2 = Date.from_string('11-09-2012')
is_date = Date.is_date_valid('11-09-2012')
Let's assume an example of a class, dealing with date information (this will be our boilerplate):
class Date(object):
def __init__(self, day=0, month=0, year=0):
self.day = day
self.month = month
self.year = year
This class obviously could be used to store information about certain dates (without timezone information; let's assume all dates are presented in UTC).
Here we have __init__
, a typical initializer of Python class instances, which receives arguments as a typical instancemethod
, having the first non-optional argument (self
) that holds a reference to a newly created instance.
Class Method
We have some tasks that can be nicely done using classmethod
s.
Let's assume that we want to create a lot of Date
class instances having date information coming from an outer source encoded as a string with format 'dd-mm-yyyy'. Suppose we have to do this in different places in the source code of our project.
So what we must do here is:
Date
by passing those values to the initialization call.This will look like:
day, month, year = map(int, string_date.split('-'))
date1 = Date(day, month, year)
For this purpose, C++ can implement such a feature with overloading, but Python lacks this overloading. Instead, we can use classmethod
. Let's create another "constructor".
@classmethod
def from_string(cls, date_as_string):
day, month, year = map(int, date_as_string.split('-'))
date1 = cls(day, month, year)
return date1
date2 = Date.from_string('11-09-2012')
Let's look more carefully at the above implementation, and review what advantages we have here:
cls
is an object that holds the class itself, not an instance of the class. It's pretty cool because if we inherit our Date
class, all children will have from_string
defined also.Static method
What about staticmethod
? It's pretty similar to classmethod
but doesn't take any obligatory parameters (like a class method or instance method does).
Let's look at the next use case.
We have a date string that we want to validate somehow. This task is also logically bound to the Date
class we've used so far, but doesn't require instantiation of it.
Here is where staticmethod
can be useful. Let's look at the next piece of code:
@staticmethod
def is_date_valid(date_as_string):
day, month, year = map(int, date_as_string.split('-'))
return day <= 31 and month <= 12 and year <= 3999
# usage:
is_date = Date.is_date_valid('11-09-2012')
So, as we can see from usage of staticmethod
, we don't have any access to what the class is---it's basically just a function, called syntactically like a method, but without access to the object and its internals (fields and another methods), while classmethod does.