I understand that sets in Python are unordered, but I'm curious about the 'order' they're displayed in, as it seems to be consistent. They seem to be out-of-order in the same way every time:
>>> set_1 = set([5, 2, 7, 2, 1, 88])
>>> set_2 = set([5, 2, 7, 2, 1, 88])
>>> set_1
set([88, 1, 2, 5, 7])
>>> set_2
set([88, 1, 2, 5, 7])
...and another example:
>>> set_3 = set('abracadabra')
>>> set_4 = set('abracadabra')
>>> set_3
set(['a', 'r', 'b', 'c', 'd'])
>>>> set_4
set(['a', 'r', 'b', 'c', 'd'])
I'm just curious why this would be. Any help?
You should watch this video (although it is CPython1 specific and about dictionaries -- but I assume it applies to sets as well).
Basically, python hashes the elements and takes the last N bits (where N is determined by the size of the set) and uses those bits as array indices to place the object in memory. The objects are then yielded in the order they exist in memory. Of course, the picture gets a little more complicated when you need to resolve collisions between hashes, but that's the gist of it.
Also note that the order that they are printed out is determined by the order that you put them in (due to collisions). So, if you reorder the list you pass to set_2
, you might get a different order out if there are key collisions.
For example:
list1 = [8,16,24]
set(list1) #set([8, 16, 24])
list2 = [24,16,8]
set(list2) #set([24, 16, 8])
Note the fact that the order is preserved in these sets is "coincidence" and has to do with collision resolution (which I don't know anything about). The point is that the last 3 bits of hash(8)
, hash(16)
and hash(24)
are the same. Because they are the same, collision resolution takes over and puts the elements in "backup" memory locations instead of the first (best) choice and so whether 8
occupies a location or 16
is determined by which one arrived at the party first and took the "best seat".
If we repeat the example with 1
, 2
and 3
, you will get a consistent order no matter what order they have in the input list:
list1 = [1,2,3]
set(list1) # set([1, 2, 3])
list2 = [3,2,1]
set(list2) # set([1, 2, 3])
since the last 3 bits of hash(1)
, hash(2)
and hash(3)
are unique.
1Note The implementation described here applies to CPython dict
and set
. I think that the general description is valid for all modern versions of CPython up to 3.6. However, starting with CPython3.6, there is an additional implementation detail that actually preserves the insertion order for iteration for dict
. It appears that set
still do not have this property. The data structure is described by this blog post by the pypy folks (who started using this before the CPython folks). The original idea (at least for the python ecosystem) is archived on the python-dev mailing list.