I have two large 2-d arrays and I'd like to find their set difference taking their rows as elements. In Matlab, the code for this would be setdiff(A,B,'rows')
. The arrays are large enough that the obvious looping methods I could think of take too long.
This should work, but is currently broken in 1.6.1 due to an unavailable mergesort for the view being created. It works in the pre-release 1.7.0 version. This should be the fastest way possible, since the views don't have to copy any memory:
>>> import numpy as np
>>> a1 = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a2 = np.array([[4,5,6],[7,8,9],[1,1,1]])
>>> a1_rows = a1.view([('', a1.dtype)] * a1.shape[1])
>>> a2_rows = a2.view([('', a2.dtype)] * a2.shape[1])
>>> np.setdiff1d(a1_rows, a2_rows).view(a1.dtype).reshape(-1, a1.shape[1])
array([[1, 2, 3]])
You can do this in Python, but it might be slow:
>>> import numpy as np
>>> a1 = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a2 = np.array([[4,5,6],[7,8,9],[1,1,1]])
>>> a1_rows = set(map(tuple, a1))
>>> a2_rows = set(map(tuple, a2))
>>> a1_rows.difference(a2_rows)
set([(1, 2, 3)])