I have a single big text file in which I want to process each line ( do some operations ) and store them in a database. Since a single simple program is taking too long, I want it to be done via multiple processes or threads. Each thread/process should read the DIFFERENT data(different lines) from that single file and do some operations on their piece of data(lines) and put them in the database so that in the end, I have whole of the data processed and my database is dumped with the data I need.
But I am not able to figure it out that how to approach this.
What you are looking for is a Producer/Consumer pattern
Basic threading example
Here is a basic example using the threading module (instead of multiprocessing)
import threading
import Queue
import sys
def do_work(in_queue, out_queue):
while True:
item = in_queue.get()
# process
result = item
out_queue.put(result)
in_queue.task_done()
if __name__ == "__main__":
work = Queue.Queue()
results = Queue.Queue()
total = 20
# start for workers
for i in xrange(4):
t = threading.Thread(target=do_work, args=(work, results))
t.daemon = True
t.start()
# produce data
for i in xrange(total):
work.put(i)
work.join()
# get the results
for i in xrange(total):
print results.get()
sys.exit()
You wouldn't share the file object with the threads. You would produce work for them by supplying the queue with lines of data. Then each thread would pick up a line, process it, and then return it in the queue.
There are some more advanced facilities built into the multiprocessing module to share data, like lists and special kind of Queue. There are trade-offs to using multiprocessing vs threads and it depends on whether your work is cpu bound or IO bound.
Basic multiprocessing.Pool example
Here is a really basic example of a multiprocessing Pool
from multiprocessing import Pool
def process_line(line):
return "FOO: %s" % line
if __name__ == "__main__":
pool = Pool(4)
with open('file.txt') as source_file:
# chunk the work into batches of 4 lines at a time
results = pool.map(process_line, source_file, 4)
print results
A Pool is a convenience object that manages its own processes. Since an open file can iterate over its lines, you can pass it to the pool.map()
, which will loop over it and deliver lines to the worker function. Map blocks and returns the entire result when its done. Be aware that this is an overly simplified example, and that the pool.map()
is going to read your entire file into memory all at once before dishing out work. If you expect to have large files, keep this in mind. There are more advanced ways to design a producer/consumer setup.
Manual "pool" with limit and line re-sorting
This is a manual example of the Pool.map, but instead of consuming an entire iterable in one go, you can set a queue size so that you are only feeding it piece by piece as fast as it can process. I also added the line numbers so that you can track them and refer to them if you want, later on.
from multiprocessing import Process, Manager
import time
import itertools
def do_work(in_queue, out_list):
while True:
item = in_queue.get()
line_no, line = item
# exit signal
if line == None:
return
# fake work
time.sleep(.5)
result = (line_no, line)
out_list.append(result)
if __name__ == "__main__":
num_workers = 4
manager = Manager()
results = manager.list()
work = manager.Queue(num_workers)
# start for workers
pool = []
for i in xrange(num_workers):
p = Process(target=do_work, args=(work, results))
p.start()
pool.append(p)
# produce data
with open("source.txt") as f:
iters = itertools.chain(f, (None,)*num_workers)
for num_and_line in enumerate(iters):
work.put(num_and_line)
for p in pool:
p.join()
# get the results
# example: [(1, "foo"), (10, "bar"), (0, "start")]
print sorted(results)