Data structure for maintaining tabular data in memory?

Roee Adler picture Roee Adler · Jun 24, 2009 · Viewed 124.4k times · Source

My scenario is as follows: I have a table of data (handful of fields, less than a hundred rows) that I use extensively in my program. I also need this data to be persistent, so I save it as a CSV and load it on start-up. I choose not to use a database because every option (even SQLite) is an overkill for my humble requirement (also - I would like to be able to edit the values offline in a simple way, and nothing is simpler than notepad).

Assume my data looks as follows (in the file it's comma separated without titles, this is just an illustration):

 Row  | Name     | Year   | Priority
------------------------------------
 1    | Cat      | 1998   | 1
 2    | Fish     | 1998   | 2
 3    | Dog      | 1999   | 1 
 4    | Aardvark | 2000   | 1
 5    | Wallaby  | 2000   | 1
 6    | Zebra    | 2001   | 3

Notes:

  1. Row may be a "real" value written to the file or just an auto-generated value that represents the row number. Either way it exists in memory.
  2. Names are unique.

Things I do with the data:

  1. Look-up a row based on either ID (iteration) or name (direct access).
  2. Display the table in different orders based on multiple field: I need to sort it e.g. by Priority and then Year, or Year and then Priority, etc.
  3. I need to count instances based on sets of parameters, e.g. how many rows have their year between 1997 and 2002, or how many rows are in 1998 and priority > 2, etc.

I know this "cries" for SQL...

I'm trying to figure out what's the best choice for data structure. Following are several choices I see:

List of row lists:

a = []
a.append( [1, "Cat", 1998, 1] )
a.append( [2, "Fish", 1998, 2] )
a.append( [3, "Dog", 1999, 1] )
...

List of column lists (there will obviously be an API for add_row etc):

a = []
a.append( [1, 2, 3, 4, 5, 6] )
a.append( ["Cat", "Fish", "Dog", "Aardvark", "Wallaby", "Zebra"] )
a.append( [1998, 1998, 1999, 2000, 2000, 2001] )
a.append( [1, 2, 1, 1, 1, 3] )

Dictionary of columns lists (constants can be created to replace the string keys):

a = {}
a['ID'] = [1, 2, 3, 4, 5, 6]
a['Name'] = ["Cat", "Fish", "Dog", "Aardvark", "Wallaby", "Zebra"] 
a['Year'] = [1998, 1998, 1999, 2000, 2000, 2001] 
a['Priority'] = [1, 2, 1, 1, 1, 3] 

Dictionary with keys being tuples of (Row, Field):

Create constants to avoid string searching
NAME=1
YEAR=2
PRIORITY=3

a={}
a[(1, NAME)] = "Cat"
a[(1, YEAR)] = 1998
a[(1, PRIORITY)] = 1
a[(2, NAME)] = "Fish"
a[(2, YEAR)] = 1998
a[(2, PRIORITY)] = 2
...

And I'm sure there are other ways... However each way has disadvantages when it comes to my requirements (complex ordering and counting).

What's the recommended approach?

EDIT:

To clarify, performance is not a major issue for me. Because the table is so small, I believe almost every operation will be in the range of milliseconds, which is not a concern for my application.

Answer

Rick Copeland picture Rick Copeland · Jun 24, 2009

Having a "table" in memory that needs lookups, sorting, and arbitrary aggregation really does call out for SQL. You said you tried SQLite, but did you realize that SQLite can use an in-memory-only database?

connection = sqlite3.connect(':memory:')

Then you can create/drop/query/update tables in memory with all the functionality of SQLite and no files left over when you're done. And as of Python 2.5, sqlite3 is in the standard library, so it's not really "overkill" IMO.

Here is a sample of how one might create and populate the database:

import csv
import sqlite3

db = sqlite3.connect(':memory:')

def init_db(cur):
    cur.execute('''CREATE TABLE foo (
        Row INTEGER,
        Name TEXT,
        Year INTEGER,
        Priority INTEGER)''')

def populate_db(cur, csv_fp):
    rdr = csv.reader(csv_fp)
    cur.executemany('''
        INSERT INTO foo (Row, Name, Year, Priority)
        VALUES (?,?,?,?)''', rdr)

cur = db.cursor()
init_db(cur)
populate_db(cur, open('my_csv_input_file.csv'))
db.commit()

If you'd really prefer not to use SQL, you should probably use a list of dictionaries:

lod = [ ] # "list of dicts"

def populate_lod(lod, csv_fp):
    rdr = csv.DictReader(csv_fp, ['Row', 'Name', 'Year', 'Priority'])
    lod.extend(rdr)

def query_lod(lod, filter=None, sort_keys=None):
    if filter is not None:
        lod = (r for r in lod if filter(r))
    if sort_keys is not None:
        lod = sorted(lod, key=lambda r:[r[k] for k in sort_keys])
    else:
        lod = list(lod)
    return lod

def lookup_lod(lod, **kw):
    for row in lod:
        for k,v in kw.iteritems():
            if row[k] != str(v): break
        else:
            return row
    return None

Testing then yields:

>>> lod = []
>>> populate_lod(lod, csv_fp)
>>> 
>>> pprint(lookup_lod(lod, Row=1))
{'Name': 'Cat', 'Priority': '1', 'Row': '1', 'Year': '1998'}
>>> pprint(lookup_lod(lod, Name='Aardvark'))
{'Name': 'Aardvark', 'Priority': '1', 'Row': '4', 'Year': '2000'}
>>> pprint(query_lod(lod, sort_keys=('Priority', 'Year')))
[{'Name': 'Cat', 'Priority': '1', 'Row': '1', 'Year': '1998'},
 {'Name': 'Dog', 'Priority': '1', 'Row': '3', 'Year': '1999'},
 {'Name': 'Aardvark', 'Priority': '1', 'Row': '4', 'Year': '2000'},
 {'Name': 'Wallaby', 'Priority': '1', 'Row': '5', 'Year': '2000'},
 {'Name': 'Fish', 'Priority': '2', 'Row': '2', 'Year': '1998'},
 {'Name': 'Zebra', 'Priority': '3', 'Row': '6', 'Year': '2001'}]
>>> pprint(query_lod(lod, sort_keys=('Year', 'Priority')))
[{'Name': 'Cat', 'Priority': '1', 'Row': '1', 'Year': '1998'},
 {'Name': 'Fish', 'Priority': '2', 'Row': '2', 'Year': '1998'},
 {'Name': 'Dog', 'Priority': '1', 'Row': '3', 'Year': '1999'},
 {'Name': 'Aardvark', 'Priority': '1', 'Row': '4', 'Year': '2000'},
 {'Name': 'Wallaby', 'Priority': '1', 'Row': '5', 'Year': '2000'},
 {'Name': 'Zebra', 'Priority': '3', 'Row': '6', 'Year': '2001'}]
>>> print len(query_lod(lod, lambda r:1997 <= int(r['Year']) <= 2002))
6
>>> print len(query_lod(lod, lambda r:int(r['Year'])==1998 and int(r['Priority']) > 2))
0

Personally I like the SQLite version better since it preserves your types better (without extra conversion code in Python) and easily grows to accommodate future requirements. But then again, I'm quite comfortable with SQL, so YMMV.