How to convert .ckpt to .pb?

Shivam Sahu picture Shivam Sahu · Jun 26, 2019 · Viewed 11.2k times · Source

I am new to deep learning and I want to use a pretrained (EAST) model to serve from the AI Platform Serving, I have these files made available by the developer:

  1. model.ckpt-49491.data-00000-of-00001
  2. checkpoint
  3. model.ckpt-49491.index
  4. model.ckpt-49491.meta

I want to convert it into the TensorFlow .pb format. Is there a way to do it? I have taken the model from here

The full code is available here.

I have looked up here and it shows the following code to convert it:

From tensorflow/models/research/

INPUT_TYPE=image_tensor
PIPELINE_CONFIG_PATH={path to pipeline config file}
TRAINED_CKPT_PREFIX={path to model.ckpt}
EXPORT_DIR={path to folder that will be used for export}

python object_detection/export_inference_graph.py \
    --input_type=${INPUT_TYPE} \
    --pipeline_config_path=${PIPELINE_CONFIG_PATH} \
    --trained_checkpoint_prefix=${TRAINED_CKPT_PREFIX} \
    --output_directory=${EXPORT_DIR}

I am unable to figure out what value to pass:

  • INPUT_TYPE
  • PIPELINE_CONFIG_PATH.

Answer

Puneith Kaul picture Puneith Kaul · Jun 27, 2019

Here's the code to convert the checkpoint to SavedModel

import os
import tensorflow as tf

trained_checkpoint_prefix = 'models/model.ckpt-49491'
export_dir = os.path.join('export_dir', '0')

graph = tf.Graph()
with tf.compat.v1.Session(graph=graph) as sess:
    # Restore from checkpoint
    loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
    loader.restore(sess, trained_checkpoint_prefix)

    # Export checkpoint to SavedModel
    builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir)
    builder.add_meta_graph_and_variables(sess,
                                         [tf.saved_model.TRAINING, tf.saved_model.SERVING],
                                         strip_default_attrs=True)
    builder.save()