I am contructing a networkx graph in python 3. I am using a pandas dataframe to supply the edges and nodes to the graph. Here is what I have done :
test = pd.read_csv("/home/Desktop/test_call1", delimiter = ';')
g_test = nx.from_pandas_edgelist(test, 'number', 'contactNumber', edge_attr='callDuration')
What I want is that the "callDuration" column of the pandas dataframe act as the weight of the edges for the networkx graph and the thickness of the edges also change accordingly.
I also want to get the 'n' maximum weighted edges.
Let's try:
import pandas as pd
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
df = pd.DataFrame({'number':['123','234','345'],'contactnumber':['234','345','123'],'callduration':[1,2,4]})
df
G = nx.from_pandas_edgelist(df,'number','contactnumber', edge_attr='callduration')
durations = [i['callduration'] for i in dict(G.edges).values()]
labels = [i for i in dict(G.nodes).keys()]
labels = {i:i for i in dict(G.nodes).keys()}
fig, ax = plt.subplots(figsize=(12,5))
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos, ax = ax, labels=True)
nx.draw_networkx_edges(G, pos, width=durations, ax=ax)
_ = nx.draw_networkx_labels(G, pos, labels, ax=ax)
Output: