Imagine I have a series of 4 possible Markovian states (A, B, C, D):
X = [A, B, B, C, B, A, D, D, A, B, A, D, ....]
How can I generate a Markov transformation matrix using Python? The matrix must be 4 by 4, showing the probability of moving from each state to the other 3 states. I've been looking at many examples online but in all of them, the matrix is given, not calculated based on data. I also looked into hmmlearn but nowhere I read on how to have it spit out the transition matrix. Is there a library that I can use for this purpose?
Here is an R code for the exact thing I am trying to do in Python: https://stats.stackexchange.com/questions/26722/calculate-transition-matrix-markov-in-r
This might give you some ideas:
transitions = ['A', 'B', 'B', 'C', 'B', 'A', 'D', 'D', 'A', 'B', 'A', 'D']
def rank(c):
return ord(c) - ord('A')
T = [rank(c) for c in transitions]
#create matrix of zeros
M = [[0]*4 for _ in range(4)]
for (i,j) in zip(T,T[1:]):
M[i][j] += 1
#now convert to probabilities:
for row in M:
n = sum(row)
if n > 0:
row[:] = [f/sum(row) for f in row]
#print M:
for row in M:
print(row)
output:
[0.0, 0.5, 0.0, 0.5]
[0.5, 0.25, 0.25, 0.0]
[0.0, 1.0, 0.0, 0.0]
[0.5, 0.0, 0.0, 0.5]
On Edit Here is a function which implements the above ideas:
#the following code takes a list such as
#[1,1,2,6,8,5,5,7,8,8,1,1,4,5,5,0,0,0,1,1,4,4,5,1,3,3,4,5,4,1,1]
#with states labeled as successive integers starting with 0
#and returns a transition matrix, M,
#where M[i][j] is the probability of transitioning from i to j
def transition_matrix(transitions):
n = 1+ max(transitions) #number of states
M = [[0]*n for _ in range(n)]
for (i,j) in zip(transitions,transitions[1:]):
M[i][j] += 1
#now convert to probabilities:
for row in M:
s = sum(row)
if s > 0:
row[:] = [f/s for f in row]
return M
#test:
t = [1,1,2,6,8,5,5,7,8,8,1,1,4,5,5,0,0,0,1,1,4,4,5,1,3,3,4,5,4,1,1]
m = transition_matrix(t)
for row in m: print(' '.join('{0:.2f}'.format(x) for x in row))
Output:
0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 0.12 0.12 0.25 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
0.00 0.20 0.00 0.00 0.20 0.60 0.00 0.00 0.00
0.17 0.17 0.00 0.00 0.17 0.33 0.00 0.17 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.33