I'm searching for the most appropriate tool for python3.x on Windows to create a Bayesian Network, learn its parameters from data and perform the inference.
The network structure I want to define myself as follows:
It is taken from this paper.
All the variables are discrete (and can take only 2 possible states) except "Size" and "GraspPose", which are continuous and should be modeled as Mixture of Gaussians.
Authors use Expectation-Maximization algorithm to learn the parameters for conditional probability tables and Junction-Tree algorithm to compute the exact inference.
As I understand all is realised in MatLab with Bayes Net Toolbox by Murphy.
I tried to search something similar in python and here are my results:
PyMC seems to be a powerful module, but I have problems with importing it on Windows 64, python 3.3. I get error when I install development version
WARNING (theano.configdefaults): g++ not detected ! Theano will be unable to execute optimized C-implementations (for both CPU and GPU) and will default to Python implementations. Performance will be severely degraded. To remove this warning, set Theano flags cxx to an empty string.
UPDATE:
Any advices and concrete examples will be highly appreciated.
It looks like pomegranate was recently updated to include Bayesian Networks. I haven't tried it myself, but the interface looks nice and sklearn-ish.