Concatenate strings from several rows using Pandas groupby

mattiasostmar picture mattiasostmar · Dec 4, 2014 · Viewed 102k times · Source

I want to merge several strings in a dataframe based on a groupedby in Pandas.

This is my code so far:

import pandas as pd
from io import StringIO

data = StringIO("""
"name1","hej","2014-11-01"
"name1","du","2014-11-02"
"name1","aj","2014-12-01"
"name1","oj","2014-12-02"
"name2","fin","2014-11-01"
"name2","katt","2014-11-02"
"name2","mycket","2014-12-01"
"name2","lite","2014-12-01"
""")

# load string as stream into dataframe
df = pd.read_csv(data,header=0, names=["name","text","date"],parse_dates=[2])

# add column with month
df["month"] = df["date"].apply(lambda x: x.month)

I want the end result to look like this:

enter image description here

I don't get how I can use groupby and apply some sort of concatenation of the strings in the column "text". Any help appreciated!

Answer

EdChum picture EdChum · Dec 4, 2014

You can groupby the 'name' and 'month' columns, then call transform which will return data aligned to the original df and apply a lambda where we join the text entries:

In [119]:

df['text'] = df[['name','text','month']].groupby(['name','month'])['text'].transform(lambda x: ','.join(x))
df[['name','text','month']].drop_duplicates()
Out[119]:
    name         text  month
0  name1       hej,du     11
2  name1        aj,oj     12
4  name2     fin,katt     11
6  name2  mycket,lite     12

I sub the original df by passing a list of the columns of interest df[['name','text','month']] here and then call drop_duplicates

EDIT actually I can just call apply and then reset_index:

In [124]:

df.groupby(['name','month'])['text'].apply(lambda x: ','.join(x)).reset_index()

Out[124]:
    name  month         text
0  name1     11       hej,du
1  name1     12        aj,oj
2  name2     11     fin,katt
3  name2     12  mycket,lite

update

the lambda is unnecessary here:

In[38]:
df.groupby(['name','month'])['text'].apply(','.join).reset_index()

Out[38]: 
    name  month         text
0  name1     11           du
1  name1     12        aj,oj
2  name2     11     fin,katt
3  name2     12  mycket,lite