I'm looking at home ownership within levels of different loan statuses, and I'd like to display this using a stacked bar chart in percentages.
I've been able to create a frequency stacked bar chart using this code:
df_trunc1=df[['loan_status','home_ownership','id']]
sub_df1=df_trunc1.groupby(['loan_status','home_ownership'])['id'].count()
sub_df1.unstack().plot(kind='bar',stacked=True,rot=1,figsize=(8,8),title="Home ownership across Loan Types")
which gives me this picture:1
but I can't figure out how to transform the graph into percentages. So for example, I'd like to get within the default group, which percentage have a mortgage, which own, etc.
Here is my groupby table for context2:
Thanks!!
I believe you need to convert the percentages yourself:
d = {('Default', 'MORTGAGE'): 498, ('Default', 'OWN'): 110, ('Default', 'RENT'): 611, ('Fully Paid', 'MORTGAGE'): 3100, ('Fully Paid', 'NONE'): 1, ('Fully Paid', 'OTHER'): 5, ('Fully Paid', 'OWN'): 558, ('Fully Paid', 'RENT'): 2568, ('Late (16-30 days)', 'MORTGAGE'): 1101, ('Late (16-30 days)', 'OWN'): 260, ('Late (16-30 days)', 'RENT'): 996, ('Late (31-120 days)', 'MORTGAGE'): 994, ('Late (31-120 days)', 'OWN'): 243, ('Late (31-120 days)', 'RENT'): 1081}
sub_df1 = pd.DataFrame(d.values(), columns=['count'], index=pd.MultiIndex.from_tuples(d.keys()))
sub_df2 = sub_df1.unstack()
sub_df2.columns = sub_df2.columns.droplevel() # Drop `count` label.
sub_df2 = sub_df2.div(sub_df2.sum())
sub_df2.T.plot(kind='bar', stacked=True, rot=1, figsize=(8, 8),
title="Home ownership across Loan Types")
sub_df3 = sub_df1.unstack().T
sub_df3.index = sub_df3.index.droplevel() # Drop `count` label.
sub_df3 = sub_df3.div(sub_df3.sum())
sub_df3.T.plot(kind='bar', stacked=True, rot=1, figsize=(8, 8),
title="Home ownership across Loan Types")