Has anyone successfully trained a caffe model? I have a training ready image set that I would like to use to create a caffe model for use with Google's Deep Dream.
The only resources I've been able to find on how to train a model are these:
ImageNet Tutorial
EDIT: Here's another, but it's not creating a deploy.prototxt file. When I try to use one from another model it "works" but isn't correct.
caffe-oxford 102
Can anyone point me in the right direction to training my own model?
I have written a simple example to train a Caffe model on the Iris data set in Python. It also gives the predicted outputs given some user-defined inputs. The network as well as the solver settings need some more tuning but I just wanted to have some code skeleton to get started. Feel free to edit to improve.
iris_tuto.py
'''
Requirements:
- Caffe (script to install Caffe and pycaffe on a new Ubuntu 14.04 LTS x64 or Ubuntu 14.10 x64.
CPU only, multi-threaded Caffe. https://stackoverflow.com/a/31396229/395857)
- sudo pip install pydot
- sudo apt-get install -y graphviz
Interesting resources on Caffe:
- https://github.com/BVLC/caffe/tree/master/examples
- http://nbviewer.ipython.org/github/joyofdata/joyofdata-articles/blob/master/deeplearning-with-caffe/Neural-Networks-with-Caffe-on-the-GPU.ipynb
Interesting resources on Iris with ANNs:
- iris data set test bed: http://deeplearning4j.org/iris-flower-dataset-tutorial.html
- http://se.mathworks.com/help/nnet/examples/iris-clustering.html
- http://lab.fs.uni-lj.si/lasin/wp/IMIT_files/neural/doc/seminar8.pdf
Synonyms:
- output = label = target
- input = feature
'''
import subprocess
import platform
import copy
from sklearn.datasets import load_iris
import sklearn.metrics
import numpy as np
from sklearn.cross_validation import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import h5py
import caffe
import caffe.draw
def load_data():
'''
Load Iris Data set
'''
data = load_iris()
print(data.data)
print(data.target)
targets = np.zeros((len(data.target), 3))
for count, target in enumerate(data.target):
targets[count][target]= 1
print(targets)
new_data = {}
#new_data['input'] = data.data
new_data['input'] = np.reshape(data.data, (150,1,1,4))
new_data['output'] = targets
#print(new_data['input'].shape)
#new_data['input'] = np.random.random((150, 1, 1, 4))
#print(new_data['input'].shape)
#new_data['output'] = np.random.random_integers(0, 1, size=(150,3))
#print(new_data['input'])
return new_data
def save_data_as_hdf5(hdf5_data_filename, data):
'''
HDF5 is one of the data formats Caffe accepts
'''
with h5py.File(hdf5_data_filename, 'w') as f:
f['data'] = data['input'].astype(np.float32)
f['label'] = data['output'].astype(np.float32)
def train(solver_prototxt_filename):
'''
Train the ANN
'''
caffe.set_mode_cpu()
solver = caffe.get_solver(solver_prototxt_filename)
solver.solve()
def print_network_parameters(net):
'''
Print the parameters of the network
'''
print(net)
print('net.inputs: {0}'.format(net.inputs))
print('net.outputs: {0}'.format(net.outputs))
print('net.blobs: {0}'.format(net.blobs))
print('net.params: {0}'.format(net.params))
def get_predicted_output(deploy_prototxt_filename, caffemodel_filename, input, net = None):
'''
Get the predicted output, i.e. perform a forward pass
'''
if net is None:
net = caffe.Net(deploy_prototxt_filename,caffemodel_filename, caffe.TEST)
#input = np.array([[ 5.1, 3.5, 1.4, 0.2]])
#input = np.random.random((1, 1, 1))
#print(input)
#print(input.shape)
out = net.forward(data=input)
#print('out: {0}'.format(out))
return out[net.outputs[0]]
import google.protobuf
def print_network(prototxt_filename, caffemodel_filename):
'''
Draw the ANN architecture
'''
_net = caffe.proto.caffe_pb2.NetParameter()
f = open(prototxt_filename)
google.protobuf.text_format.Merge(f.read(), _net)
caffe.draw.draw_net_to_file(_net, prototxt_filename + '.png' )
print('Draw ANN done!')
def print_network_weights(prototxt_filename, caffemodel_filename):
'''
For each ANN layer, print weight heatmap and weight histogram
'''
net = caffe.Net(prototxt_filename,caffemodel_filename, caffe.TEST)
for layer_name in net.params:
# weights heatmap
arr = net.params[layer_name][0].data
plt.clf()
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111)
cax = ax.matshow(arr, interpolation='none')
fig.colorbar(cax, orientation="horizontal")
plt.savefig('{0}_weights_{1}.png'.format(caffemodel_filename, layer_name), dpi=100, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
plt.close()
# weights histogram
plt.clf()
plt.hist(arr.tolist(), bins=20)
plt.savefig('{0}_weights_hist_{1}.png'.format(caffemodel_filename, layer_name), dpi=100, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
plt.close()
def get_predicted_outputs(deploy_prototxt_filename, caffemodel_filename, inputs):
'''
Get several predicted outputs
'''
outputs = []
net = caffe.Net(deploy_prototxt_filename,caffemodel_filename, caffe.TEST)
for input in inputs:
#print(input)
outputs.append(copy.deepcopy(get_predicted_output(deploy_prototxt_filename, caffemodel_filename, input, net)))
return outputs
def get_accuracy(true_outputs, predicted_outputs):
'''
'''
number_of_samples = true_outputs.shape[0]
number_of_outputs = true_outputs.shape[1]
threshold = 0.0 # 0 if SigmoidCrossEntropyLoss ; 0.5 if EuclideanLoss
for output_number in range(number_of_outputs):
predicted_output_binary = []
for sample_number in range(number_of_samples):
#print(predicted_outputs)
#print(predicted_outputs[sample_number][output_number])
if predicted_outputs[sample_number][0][output_number] < threshold:
predicted_output = 0
else:
predicted_output = 1
predicted_output_binary.append(predicted_output)
print('accuracy: {0}'.format(sklearn.metrics.accuracy_score(true_outputs[:, output_number], predicted_output_binary)))
print(sklearn.metrics.confusion_matrix(true_outputs[:, output_number], predicted_output_binary))
def main():
'''
This is the main function
'''
# Set parameters
solver_prototxt_filename = 'iris_solver.prototxt'
train_test_prototxt_filename = 'iris_train_test.prototxt'
deploy_prototxt_filename = 'iris_deploy.prototxt'
deploy_prototxt_filename = 'iris_deploy.prototxt'
deploy_prototxt_batch2_filename = 'iris_deploy_batchsize2.prototxt'
hdf5_train_data_filename = 'iris_train_data.hdf5'
hdf5_test_data_filename = 'iris_test_data.hdf5'
caffemodel_filename = 'iris__iter_5000.caffemodel' # generated by train()
# Prepare data
data = load_data()
print(data)
train_data = data
test_data = data
save_data_as_hdf5(hdf5_train_data_filename, data)
save_data_as_hdf5(hdf5_test_data_filename, data)
# Train network
train(solver_prototxt_filename)
# Print network
print_network(deploy_prototxt_filename, caffemodel_filename)
print_network(train_test_prototxt_filename, caffemodel_filename)
print_network_weights(train_test_prototxt_filename, caffemodel_filename)
# Compute performance metrics
#inputs = input = np.array([[[[ 5.1, 3.5, 1.4, 0.2]]],[[[ 5.9, 3. , 5.1, 1.8]]]])
inputs = data['input']
outputs = get_predicted_outputs(deploy_prototxt_filename, caffemodel_filename, inputs)
get_accuracy(data['output'], outputs)
if __name__ == "__main__":
main()
#cProfile.run('main()') # if you want to do some profiling
iris_train_test.prototxt
:
name: "IrisNet"
layer {
name: "iris"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
hdf5_data_param {
source: "iris_train_data.txt"
batch_size: 1
}
}
layer {
name: "iris"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TEST
}
hdf5_data_param {
source: "iris_test_data.txt"
batch_size: 1
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "data"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 50
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "drop1"
type: "Dropout"
bottom: "ip1"
top: "ip1"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 50
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "drop2"
type: "Dropout"
bottom: "ip2"
top: "ip2"
dropout_param {
dropout_ratio: 0.4
}
}
layer {
name: "ip3"
type: "InnerProduct"
bottom: "ip2"
top: "ip3"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "drop3"
type: "Dropout"
bottom: "ip3"
top: "ip3"
dropout_param {
dropout_ratio: 0.3
}
}
layer {
name: "loss"
type: "SigmoidCrossEntropyLoss"
# type: "EuclideanLoss"
# type: "HingeLoss"
bottom: "ip3"
bottom: "label"
top: "loss"
}
iris_deploy.prototxt
:
name: "IrisNet"
input: "data"
input_dim: 1 # batch size
input_dim: 1
input_dim: 1
input_dim: 4
layer {
name: "ip1"
type: "InnerProduct"
bottom: "data"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 50
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "drop1"
type: "Dropout"
bottom: "ip1"
top: "ip1"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 50
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "drop2"
type: "Dropout"
bottom: "ip2"
top: "ip2"
dropout_param {
dropout_ratio: 0.4
}
}
layer {
name: "ip3"
type: "InnerProduct"
bottom: "ip2"
top: "ip3"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 3
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "drop3"
type: "Dropout"
bottom: "ip3"
top: "ip3"
dropout_param {
dropout_ratio: 0.3
}
}
iris_solver.prototxt
:
# The train/test net protocol buffer definition
net: "iris_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
test_iter: 1
# Carry out testing every test_interval training iterations.
test_interval: 1000
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.0001
momentum: 0.001
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 1000
# The maximum number of iterations
max_iter: 5000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "iris_"
# solver mode: CPU or GPU
solver_mode: CPU # GPU