In a dataframe I'm trying to identify those rows that have a value in column C2 that does not exist in column C1 in any other row. I tryed the following code:
in_df = sqlContext.createDataFrame([[1,None,'A'],[2,1,'B'],[3,None,'C'],[4,11,'D']],['C1','C2','C3'])
in_df.show()
+---+----+---+
| C1| C2| C3|
+---+----+---+
| 1|null| A|
| 2| 1| B|
| 3|null| C|
| 4| 11| D|
+---+----+---+
filtered = in_df.filter(in_df.C2.isNotNull())
filtered.show()
+---+---+---+
| C1| C2| C3|
+---+---+---+
| 2| 1| B|
| 4| 11| D|
+---+---+---+
Now applying a left_anti join is expected to return only the row 4, however I also get row 2:
filtered.join(in_df,(in_df.C1 == filtered.C2), 'left_anti').show()
+---+---+---+
| C1| C2| C3|
+---+---+---+
| 2| 1| B|
| 4| 11| D|
+---+---+---+
If I 'materialize' the filtered DF the result is as expected:
filtered = filtered.toDF(*filtered.columns)
filtered.join(in_df,(in_df.C1 == filtered.C2), 'left_anti').show()
+---+---+---+
| C1| C2| C3|
+---+---+---+
| 4| 11| D|
+---+---+---+
Why is this .toDF needed?
in_df.C1
is actually refering to a filtered
column as shows the following code:
in_df = sqlContext.createDataFrame([[1,None,'A'],[2,1,'B'],[3,None,'C'],[4,11,'D']],['C1','C2','C3'])
filtered = in_df.filter(in_df.C2.isNotNull()).select("C2")
filtered.join(in_df,(in_df.C1 == filtered.C2), 'left_anti').show()
Py4JJavaError: An error occurred while calling o699.join. : org.apache.spark.sql.AnalysisException: cannot resolve '
in_df.C1
' given input columns: [C2, C1, C2, C3];; 'Join LeftAnti, ('in_df.C1 = 'filtered.C2) :- Project [C2#891L] : +- Filter isnotnull(C2#891L) : +- LogicalRDD [C1#890L, C2#891L, C3#892] +- LogicalRDD [C1#900L, C2#901L, C3#902]
So basically when joining the 2 dataframes you actually use the condition filtered.C1 == filtered.C2
:
filtered = in_df.filter(in_df.C2.isNotNull())
filtered.join(in_df,(filtered.C1 == filtered.C2), 'left_anti').show()
+---+---+---+
| C1| C2| C3|
+---+---+---+
| 2| 1| B|
| 4| 11| D|
+---+---+---+
You might have changed the name of the dataframe but the columns in it can still be referred calling in_df.Ci
. To make sure you're referring to the right dataframe you can use aliases:
import pyspark.sql.functions as psf
filtered.alias("filtered").join(in_df.alias("in_df"),(psf.col("in_df.C1") == psf.col("filtered.C2")), 'left_anti').show()
+---+---+---+
| C1| C2| C3|
+---+---+---+
| 4| 11| D|
+---+---+---+
The best way to deal with column name ambiguities is to avoid them from the start (renaming columns or using aliases for your data frame).