I would like to ask how to create a circle with radius=4km
. I have tried the ST_Buffer
function but it creates a larger circle. (I see the created circle by inserting its polygon into an new kml file.)
This is what i am trying.
INSERT INTO camera(geom_circle) VALUES(geometry(ST_Buffer(georgaphy(ST_GeomFromText('POINT(21.304116745663165 38.68607570952619)')), 4000)))
The center of the circle is a lon lat point but I don't know its SRID
because I have imported it from a kml file.
Do I need the SRID
in order to transform the geometries etc?
KML files are always lat/long and use SRID=4326. This SRID is implied if you use geography
. Geography is a good way to mix-in the 4 km metric measure on lat/long data ... excellent you tried this!
Try this statement to fix up the casts, and use a parameterized point constructor:
SELECT ST_Buffer(ST_MakePoint(21.304116745663165, 38.68607570952619)::geography, 4000);
And if you need to cast this back to geometry, add a ::geometry
cast to the end.
The previous answer internally re-projects the geometry (usually) to a UTM zone that the point fits within (see ST_Buffer). This may cause minor distortions if the point is on the edge of two UTM boundaries. Most folks won't care about the size of these errors, but it will often be several meters. However, if you require sub millimeter precision, consider building a dynamic azimuthal equidistant projection. This requires PostGIS 2.3's ST_Transform
, and is adapted from another answer:
CREATE OR REPLACE FUNCTION geodesic_buffer(geom geometry, dist double precision,
num_seg_quarter_circle integer)
RETURNS geometry AS $$
SELECT ST_Transform(
ST_Buffer(ST_Point(0, 0), $2, $3),
('+proj=aeqd +x_0=0 +y_0=0 +lat_0='
|| ST_Y(ST_Centroid($1))::text || ' +lon_0=' || ST_X(ST_Centroid($1))::text),
ST_SRID($1))
$$ LANGUAGE sql IMMUTABLE STRICT COST 100;
CREATE OR REPLACE FUNCTION geodesic_buffer(geom geometry, dist double precision)
RETURNS geometry AS 'SELECT geodesic_buffer($1, $2, 8)'
LANGUAGE sql IMMUTABLE STRICT COST 100;
-- Optional warppers for geography type
CREATE OR REPLACE FUNCTION geodesic_buffer(geog geography, dist double precision)
RETURNS geography AS 'SELECT geodesic_buffer($1::geometry, $2)::geography'
LANGUAGE sql IMMUTABLE STRICT COST 100;
CREATE OR REPLACE FUNCTION geodesic_buffer(geog geography, dist double precision,
num_seg_quarter_circle integer)
RETURNS geography AS 'SELECT geodesic_buffer($1::geometry, $2, $3)::geography'
LANGUAGE sql IMMUTABLE STRICT COST 100;
A simple example to run one of the functions is:
SELECT geodesic_buffer(ST_MakePoint(21.304116745663165, 38.68607570952619)::geography, 4000);
And to compare the distances to each of the buffered points, here are the lengths of each geodesic (shortest path on an ellipsoid of revolution, i.e. WGS84). First this function:
SELECT count(*), min(buff_dist), avg(buff_dist), max(buff_dist)
FROM (
SELECT ST_Distance((ST_DumpPoints(geodesic_buffer(poi, dist)::geometry)).geom, poi) AS buff_dist
FROM (SELECT ST_MakePoint(21.304116745663165, 38.68607570952619)::geography AS poi, 4000 AS dist) AS f
) AS f;
count | min | avg | max
-------+----------------+-----------------+----------------
33 | 3999.999999953 | 3999.9999999743 | 4000.000000001
Compare this to ST_Buffer (first part of answer), that shows it's off by about 1.56 m:
SELECT count(*), min(buff_dist), avg(buff_dist), max(buff_dist)
FROM (
SELECT ST_Distance((ST_DumpPoints(ST_Buffer(poi, dist)::geometry)).geom, poi) AS buff_dist
FROM (SELECT ST_MakePoint(21.304116745663165, 38.68607570952619)::geography AS poi, 4000 AS dist) AS f
) AS f;
count | min | avg | max
-------+----------------+------------------+----------------
33 | 4001.560675049 | 4001.56585986067 | 4001.571105793