Given the following code:
package main
import (
"fmt"
"math/rand"
"time"
)
func main() {
for i := 0; i < 3; i++ {
go f(i)
}
// prevent main from exiting immediately
var input string
fmt.Scanln(&input)
}
func f(n int) {
for i := 0; i < 10; i++ {
dowork(n, i)
amt := time.Duration(rand.Intn(250))
time.Sleep(time.Millisecond * amt)
}
}
func dowork(goroutine, loopindex int) {
// simulate work
time.Sleep(time.Second * time.Duration(5))
fmt.Printf("gr[%d]: i=%d\n", goroutine, loopindex)
}
Can i assume that the 'dowork' function will be executed in parallel?
Is this a correct way of achieving parallelism or is it better to use channels and separate 'dowork' workers for each goroutine?
Regarding GOMAXPROCS
, you can find this in Go 1.5's release docs:
By default, Go programs run with GOMAXPROCS set to the number of cores available; in prior releases it defaulted to 1.
Regarding preventing the main
function from exiting immediately, you could leverage WaitGroup
's Wait
function.
I wrote this utility function to help parallelize a group of functions:
import "sync"
// Parallelize parallelizes the function calls
func Parallelize(functions ...func()) {
var waitGroup sync.WaitGroup
waitGroup.Add(len(functions))
defer waitGroup.Wait()
for _, function := range functions {
go func(copy func()) {
defer waitGroup.Done()
copy()
}(function)
}
}
So in your case, we could do this
func1 := func() {
f(0)
}
func2 = func() {
f(1)
}
func3 = func() {
f(2)
}
Parallelize(func1, func2, func3)
If you wanted to use the Parallelize function, you can find it here https://github.com/shomali11/util