Make Pandas DataFrame apply() use all cores?

Roko Mijic picture Roko Mijic · Aug 7, 2017 · Viewed 56.2k times · Source

As of August 2017, Pandas DataFame.apply() is unfortunately still limited to working with a single core, meaning that a multi-core machine will waste the majority of its compute-time when you run df.apply(myfunc, axis=1).

How can you use all your cores to run apply on a dataframe in parallel?

Answer

Roko Mijic picture Roko Mijic · Aug 7, 2017

The simplest way is to use Dask's map_partitions. You need these imports (you will need to pip install dask):

import pandas as pd
import dask.dataframe as dd
from dask.multiprocessing import get

and the syntax is

data = <your_pandas_dataframe>
ddata = dd.from_pandas(data, npartitions=30)

def myfunc(x,y,z, ...): return <whatever>

res = ddata.map_partitions(lambda df: df.apply((lambda row: myfunc(*row)), axis=1)).compute(get=get)  

(I believe that 30 is a suitable number of partitions if you have 16 cores). Just for completeness, I timed the difference on my machine (16 cores):

data = pd.DataFrame()
data['col1'] = np.random.normal(size = 1500000)
data['col2'] = np.random.normal(size = 1500000)

ddata = dd.from_pandas(data, npartitions=30)
def myfunc(x,y): return y*(x**2+1)
def apply_myfunc_to_DF(df): return df.apply((lambda row: myfunc(*row)), axis=1)
def pandas_apply(): return apply_myfunc_to_DF(data)
def dask_apply(): return ddata.map_partitions(apply_myfunc_to_DF).compute(get=get)  
def vectorized(): return myfunc(data['col1'], data['col2']  )

t_pds = timeit.Timer(lambda: pandas_apply())
print(t_pds.timeit(number=1))

28.16970546543598

t_dsk = timeit.Timer(lambda: dask_apply())
print(t_dsk.timeit(number=1))

2.708152851089835

t_vec = timeit.Timer(lambda: vectorized())
print(t_vec.timeit(number=1))

0.010668013244867325

Giving a factor of 10 speedup going from pandas apply to dask apply on partitions. Of course, if you have a function you can vectorize, you should - in this case the function (y*(x**2+1)) is trivially vectorized, but there are plenty of things that are impossible to vectorize.