Calculating returns from a dataframe with financial data

Daniel picture Daniel · Nov 14, 2012 · Viewed 48.7k times · Source

I have a dataframe with monthly financial data:

In [89]: vfiax_monthly.head()
Out[89]: 
            year  month  day       d   open  close   high    low  volume  aclose
2003-01-31  2003      1   31  731246  64.95  64.95  64.95  64.95       0   64.95
2003-02-28  2003      2   28  731274  63.98  63.98  63.98  63.98       0   63.98
2003-03-31  2003      3   31  731305  64.59  64.59  64.59  64.59       0   64.59
2003-04-30  2003      4   30  731335  69.93  69.93  69.93  69.93       0   69.93
2003-05-30  2003      5   30  731365  73.61  73.61  73.61  73.61       0   73.61

I'm trying to calculate the returns like that:

In [90]: returns = (vfiax_monthly.open[1:] - vfiax_monthly.open[:-1])/vfiax_monthly.open[1:]

But I'm getting only zeroes:

In [91]: returns.head()
Out[91]: 
2003-01-31   NaN
2003-02-28     0
2003-03-31     0
2003-04-30     0
2003-05-30     0
Freq: BM, Name: open

I think that's because the arithmetic operations get aligned on the index and that makes the [1:] and [:-1] useless.

My workaround is:

In [103]: returns = (vfiax_monthly.open[1:].values - vfiax_monthly.open[:-1].values)/vfiax_monthly.open[1:].values

In [104]: returns = pd.Series(returns, index=vfiax_monthly.index[1:])

In [105]: returns.head()
Out[105]: 
2003-02-28   -0.015161
2003-03-31    0.009444
2003-04-30    0.076362
2003-05-30    0.049993
2003-06-30    0.012477
Freq: BM

Is there a better way to calculate the returns? I don't like the conversion to array and then back to Series.

Answer

Matti John picture Matti John · Nov 15, 2012

Instead of slicing, use .shift to move the index position of values in a DataFrame/Series. For example:

returns = (vfiax_monthly.open - vfiax_monthly.open.shift(1))/vfiax_monthly.open.shift(1)

This is what pct_change is doing under the bonnet. You can also use it for other functions e.g.:

(3*vfiax_monthly.open + 2*vfiax_monthly.open.shift(1))/5

You might also want to looking into the rolling and window functions for other types of analysis of financial data.