We are going to migrate an application to have it support Unicode and have to choose between unicode character set for the whole database, or unicode columns stored in N[VAR]CHAR2.
We know that we will no more have the possibility of indexing column contents with Oracle Text if we choose NVARCHAR2, because Oracle Text can only index columns based on the CHAR type.
Apart that, is it likely that other major differences arise when harvesting from Oracle possibilities?
Also, is it likely that some new features are added in newer versions of Oracle, but only supporting either CHAR columns or NCHAR columns but not both?
Thank you for your answers.
Thank you for your answer. I will discuss your points, applied to our case:
Our application is usually alone on the Oracle database and takes care of the data itself. Other software that connect to the database are limited to Toad, Tora or SQL developer.
We also use SQL*Loader and SQL*Plus to communicate with the database for basic statements or to upgrade between versions of the product. We have not heard of any specific problem with all those software regarding NVARCHAR2.
We are also not aware that database administrators among our customers would like to use other tools on the database that could not support data on NVARCHAR2 and we are not really concerned whether their tools might disrupt, after all they are skilled in their job and may find other tools if necessary.
Your last two points are more insightful for our case. We do not use many built-in packages from Oracle but it still happens. We will explore that problem.
Could we also expect performance breakage if our application (that is compiled under Visual C++), that uses wchar_t
to
store UTF-16, has to perform encoding conversions on all processed data?
If you have anything close to a choice, use a Unicode character set for the entire database. Life in general is just blindingly easier that way.
Oracle designed the NCHAR/ NVARCHAR2 data types for cases where you are trying to support legacy applications that don't support Unicode in the same database as new applications that are using Unicode and for cases where it is beneficial to store some Unicode data with a different encoding (i.e. you have a large amount of Japanese data that you would prefer to store using the UTF-16 encoding in a NVARCHAR2 rather than the UTF-8 encoding). If you are not in one of those two situations, and it doesn't sound like you are, I would avoid NCHAR/ NVARCHAR2 at all costs.
Responding to your followups
Our application is usually alone on the Oracle database and takes care of the data itself. Other software that connect to the database are limited to Toad, Tora or SQL developer.
What do you mean "takes care of the data itself"? I'm hoping you're not saying that you've configured your application to bypass Oracle's character set conversion routines and that you do all the character set conversion yourself.
I'm also assuming that you are using some sort of API/ library to access the database even if that is OCI. Have you looked into what changes you'll need to make to your application to support NCHAR/ NVARCHAR2 and whether the API you're using supports NCHAR/ NVARCHAR2? The fact that you're getting Unicode data in C++ doesn't actually indicate that you won't need to make (potentially significant) changes to support NCHAR/ NVARCHAR2 columns.
We also use SQL*Loader and SQL*Plus to communicate with the database for basic statements or to upgrade between versions of the product. We have not heard of any specific problem with all those software regarding NVARCHAR2.
Those applications all work with NCHAR/ NVARCHAR2. NCHAR/ NVARCHAR2 introduce some additional complexities into scripts particularly if you are trying to encode string constants that are not representable in the database character set. You can certainly work around the issues, though.
We are also not aware that database administrators among our customers would like to use other tools on the database that could not support data on NVARCHAR2 and we are not really concerned whether their tools might disrupt, after all they are skilled in their job and may find other tools if necessary.
While I'm sure that your customers can find alternate ways of working with your data, if your application doesn't play nicely with their enterprise reporting tool or their enterprise ETL tool or whatever desktop tools they happen to be experienced with, it's very likely that the customer will blame your application rather than their tools. It probably won't be a show stopper, but there is also no benefit to causing customers grief unnecessarily. That may not drive them to use a competitor's product, but it won't make them eager to embrace your product.
Could we also expect performance breakage if our application (that is compiled under Visual C++), that uses wchar_t to store UTF-16, has to perform encoding conversions on all processed data?
I'm not sure what "conversions" you're talking about. This may get back to my initial question about whether you're stating that you are bypassing Oracle's NLS layer to do character set conversion on your own.
My bottom line, though, is that I don't see any advantages to using NCHAR/ NVARCHAR2 given what you're describing. There are plenty of potential downsides to using them. Even if you can eliminate 99% of the downsides as irrelevant to your particular needs, however, you're still facing a situation where at best it's a wash between the two approaches. Given that, I'd much rather go with the approach that maximizes flexibility going forward, and that's converting the entire database to Unicode (AL32UTF8 presumably) and just using that.