I am trying to compute numerically the solutions for a system of many equations and variables (100+). I tried so far three things:
I would appreciate any ideas... Here is the code (this one the fminsearch I tried):
This is the run file:
clear all
clc
% parameter
z=1.2;
w=20;
lam=0.7;
tau=1;
N=1000;
t_min=1;
t_max=4;
M=6;
a_min=0.6;
a_max=0.8;
t=zeros(1,N);
alp=zeros(1,M);
p=zeros(1,M);
p_min=2;
p_max=1;
for i=1:N
t(i)= t_min + (i-1)*(t_max - t_min)/(N-1);
end
for i=1:M
alp(i)= a_min + (i-1)*(a_max - a_min)/(M-1);
p(i)= p_min + (i-1)*(p_max - p_min)/(M-1);
end
fun=@(p) david(p ,z,w,lam,tau,N,M,t,alp);
p0=p;
fminsearch(fun,p0)
And this is the program-file:
function crit=david(p, z,w,lam,tau,N,M,t,alp)
X = zeros(M,N);
pi = zeros(M,N);
C = zeros(1,N);
Xa=zeros(1,N);
Z=zeros(1,M);
rl=0.01;
rh=1.99;
EXD=140;
while (abs(EXD)>100)
r1=rl + 0.5*(rh-rl);
for i=1:M
for j=1:N
X(i,j)=min(w*(1+lam), (alp(i) * p(i) / r1)^(1/(1-alp(i))) * t(j)^((z-alp(i))/(1-alp(i))));
pi(i,j)=p(i) * t(j)^(z-alp(i)) * X(i,j)^(alp(i)) - r1*X(i,j);
end
end
[C,I] = max(pi);
Xa(1)=X(I(1),1);
for j=2:N
Xa(j)=X(I(j),j);
end
EXD=sum(Xa)- N*w;
if (abs(EXD)>100 && EXD>0)
rl=r1;
elseif (abs(EXD)>100 && EXD<0)
rh=r1;
end
end
Ya=zeros(M,N);
for j=1:N
Ya(I(j),j)=t(j)^(z-alp(I(j))) * X(I(j),j)^(alp(I(j)));
end
Yi=sum(Ya,2);
if (Yi(1)==0)
Z(1)=-50;
end
for j=2:M
if (Yi(j)==0)
Z(j)=-50;
else
Z(j)=(p(1)/p(j))^tau - Yi(j)/Yi(1);
end
end
zz=sum(abs(Z))
crit=(sum(abs(Z)));
First of all my recommendation: use your brain.
What do you know about the function, can you use a gradient approach, linearize the problem, or perhaps fix most of the variables? If not, think twice before you decide that you are really interested in all 100 variables and perhaps simplify the problem.
Now, if that is not possible read this:
ndgrid
and then evaluating them all at once is preferable. (Needless to say this will not be a nice solution for 100 nontrivial variables)