I am trying to extract features using OpenCV's HoG API, however I can't seem to find the API that allow me to do that.
What I am trying to do is to extract features using HoG from all my dataset (a set number of positive and negative images), then train my own SVM.
I peeked into HoG.cpp under OpenCV, and it didn't help. All the codes are buried within complexities and the need to cater for different hardwares (e.g. Intel's IPP)
My question is:
So far, I am actually porting an existing library (http://hogprocessing.altervista.org/) from Processing (Java) to C++, but it's still very slow, with detection taking around at least 16 seconds
Has anyone else successfully to extract HoG features, how did you go around it ? And do you have any open source codes which I could use ?
Thanks in advance
You can use hog class in opencv as follows
HOGDescriptor hog;
vector<float> ders;
vector<Point> locs;
This function computes the hog features for you
hog.compute(grayImg, ders, Size(32, 32), Size(0, 0), locs);
The HOG features computed for grayImg
are stored in ders
vector to make it into a matrix, which can be used later for training.
Mat Hogfeat(ders.size(), 1, CV_32FC1);
for(int i=0;i<ders.size();i++)
Hogfeat.at<float>(i,0)=ders.at(i);
Now your HOG features are stored in Hogfeat matrix.
You can also set the window size, cell size and block size by using object hog
as follows:
hog.blockSize = 16;
hog.cellSize = 4;
hog.blockStride = 8;
// This is for comparing the HOG features of two images without using any SVM
// (It is not an efficient way but useful when you want to compare only few or two images)
// Simple distance
// Consider you have two HOG feature vectors for two images Hogfeat1 and Hogfeat2 and those are same size.
double distance = 0;
for(int i = 0; i < Hogfeat.rows; i++)
distance += abs(Hogfeat.at<float>(i, 0) - Hogfeat.at<float>(i, 0));
if (distance < Threshold)
cout<<"Two images are of same class"<<endl;
else
cout<<"Two images are of different class"<<endl;
Hope it is useful :)