OpenCV RotatedRect with specified angle

MShekow picture MShekow · May 26, 2012 · Viewed 10.4k times · Source

I have the situation that I have a small binary image that has one shape, around which I want to find the best fitting rotated rectangle (not bounding rectangle). I know that there is cv::minAreaRect() that you apply on the result found by cv::findContours(), but this has delivered poor results in my case, because the data is noisy (coming from MS Kinect, see example picture Noise sensitivity where rotation changes due to the input data (contour) being slightly different). What I did instead was to calculate the principal axis using PCA on my binary image (which is less sensitive to noise), which yields angle "a", and now I want to create a RotatedRect around my shape, given the angle of the principal axis, a).

I have an illustration, made with my superb Paint skills! Illustration

So then my question is: do you guys have code snippets or concrete suggestions to solve this? I'm afraid that I have to do many Bresenham iterations, hoping that there is a clever approach.

Btw, for those who are not too familiar with the RotatedRect data structure of openCV: it is defined by height, width, angle, and center point, assuming that center point is actually, well, in the center of the rectangle.

Cheers!

Answer

MShekow picture MShekow · May 27, 2012

OK, my solution: Approach:

  1. PCA, gives the angle and a first approximation for the rotatedRect's center
  2. Get the contour of the binary shape, rotate it into upright position, get min/max of X and Y coordinates to get the width and height of the bounding rect
  3. Subtract half the width (height) from maximum X (Y) to get the center point in the "upright space"
  4. Rotate this center point back by the inverse rotation matrix

    cv::RotatedRect Utilities::getBoundingRectPCA( cv::Mat& binaryImg ) {
    cv::RotatedRect result;
    
    //1. convert to matrix that contains point coordinates as column vectors
    int count = cv::countNonZero(binaryImg);
    if (count == 0) {
        std::cout << "Utilities::getBoundingRectPCA() encountered 0 pixels in binary image!" << std::endl;
        return cv::RotatedRect();
    }
    
    cv::Mat data(2, count, CV_32FC1);
    int dataColumnIndex = 0;
    for (int row = 0; row < binaryImg.rows; row++) {
        for (int col = 0; col < binaryImg.cols; col++) {
            if (binaryImg.at<unsigned char>(row, col) != 0) {
                data.at<float>(0, dataColumnIndex) = (float) col; //x coordinate
                data.at<float>(1, dataColumnIndex) = (float) (binaryImg.rows - row); //y coordinate, such that y axis goes up
                ++dataColumnIndex;
            }
        }
    }
    
    //2. perform PCA
    const int maxComponents = 1;
    cv::PCA pca(data, cv::Mat() /*mean*/, CV_PCA_DATA_AS_COL, maxComponents);
    //result is contained in pca.eigenvectors (as row vectors)
    //std::cout << pca.eigenvectors << std::endl;
    
    //3. get angle of principal axis
    float dx = pca.eigenvectors.at<float>(0, 0);
    float dy = pca.eigenvectors.at<float>(0, 1);
    float angle = atan2f(dy, dx)  / (float)CV_PI*180.0f;
    
    //find the bounding rectangle with the given angle, by rotating the contour around the mean so that it is up-right
    //easily finding the bounding box then
    cv::Point2f center(pca.mean.at<float>(0,0), binaryImg.rows - pca.mean.at<float>(1,0));
    cv::Mat rotationMatrix = cv::getRotationMatrix2D(center, -angle, 1);
    cv::Mat rotationMatrixInverse = cv::getRotationMatrix2D(center, angle, 1);
    
    std::vector<std::vector<cv::Point> > contours;
    cv::findContours(binaryImg, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
    if (contours.size() != 1) {
        std::cout << "Warning: found " << contours.size() << " contours in binaryImg (expected one)" << std::endl;
        return result;
    }
    
    //turn vector of points into matrix (with points as column vectors, with a 3rd row full of 1's, i.e. points are converted to extended coords)
    cv::Mat contourMat(3, contours[0].size(), CV_64FC1);
    double* row0 = contourMat.ptr<double>(0);
    double* row1 = contourMat.ptr<double>(1);
    double* row2 = contourMat.ptr<double>(2);
    for (int i = 0; i < (int) contours[0].size(); i++) {
        row0[i] = (double) (contours[0])[i].x;
        row1[i] = (double) (contours[0])[i].y;
        row2[i] = 1;
    }
    
    cv::Mat uprightContour = rotationMatrix*contourMat;
    
    //get min/max in order to determine width and height
    double minX, minY, maxX, maxY;
    cv::minMaxLoc(cv::Mat(uprightContour, cv::Rect(0, 0, contours[0].size(), 1)), &minX, &maxX); //get minimum/maximum of first row
    cv::minMaxLoc(cv::Mat(uprightContour, cv::Rect(0, 1, contours[0].size(), 1)), &minY, &maxY); //get minimum/maximum of second row
    
    int minXi = cvFloor(minX);
    int minYi = cvFloor(minY);
    int maxXi = cvCeil(maxX);
    int maxYi = cvCeil(maxY);
    
    //fill result
    result.angle = angle;
    result.size.width = (float) (maxXi - minXi);
    result.size.height = (float) (maxYi - minYi);
    
    //Find the correct center:
    cv::Mat correctCenterUpright(3, 1, CV_64FC1);
    correctCenterUpright.at<double>(0, 0) = maxX - result.size.width/2;
    correctCenterUpright.at<double>(1,0) = maxY - result.size.height/2;
    correctCenterUpright.at<double>(2,0) = 1;
    cv::Mat correctCenterMat = rotationMatrixInverse*correctCenterUpright;
    cv::Point correctCenter = cv::Point(cvRound(correctCenterMat.at<double>(0,0)), cvRound(correctCenterMat.at<double>(1,0)));
    
    result.center = correctCenter;
    
    return result;
    

    }