How does @synchronized lock/unlock in Objective-C?

David Lin picture David Lin · Aug 1, 2009 · Viewed 183.9k times · Source

Does @synchronized not use "lock" and "unlock" to achieve mutual exclusion? How does it do lock/unlock then?

The output of the following program is only "Hello World".

@interface MyLock: NSLock<NSLocking>
@end

@implementation MyLock

- (id)init {
    return [super init];
}

- (void)lock {
    NSLog(@"before lock");
    [super lock];
    NSLog(@"after lock");
}

- (void)unlock {
    NSLog(@"before unlock");
    [super unlock];
    NSLog(@"after unlock");
}

@end


int main (int argc, const char * argv[]) {
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

    MyLock *lock = [[MyLock new] autorelease];
    @synchronized(lock) {
        NSLog(@"Hello World");
    }

    [pool drain];
}

Answer

Louis Gerbarg picture Louis Gerbarg · Aug 1, 2009

The Objective-C language level synchronization uses the mutex, just like NSLock does. Semantically there are some small technical differences, but it is basically correct to think of them as two separate interfaces implemented on top of a common (more primitive) entity.

In particular with a NSLock you have an explicit lock whereas with @synchronized you have an implicit lock associated with the object you are using to synchronize. The benefit of the language level locking is the compiler understands it so it can deal with scoping issues, but mechanically they behave basically the same.

You can think of @synchronized as a compiler rewrite:

- (NSString *)myString {
  @synchronized(self) {
    return [[myString retain] autorelease];
  }
}

is transformed into:

- (NSString *)myString {
  NSString *retval = nil;
  pthread_mutex_t *self_mutex = LOOK_UP_MUTEX(self);
  pthread_mutex_lock(self_mutex);
  retval = [[myString retain] autorelease];
  pthread_mutex_unlock(self_mutex);
  return retval;
}

That is not exactly correct because the actual transform is more complex and uses recursive locks, but it should get the point across.