I have two 2-D arrays with the same first axis dimensions. In python, I would like to convolve the two matrices along the second axis only. I would like to get C
below without computing the convolution along the first axis as well.
import numpy as np
import scipy.signal as sg
M, N, P = 4, 10, 20
A = np.random.randn(M, N)
B = np.random.randn(M, P)
C = sg.convolve(A, B, 'full')[(2*M-1)/2]
Is there a fast way?
You can use np.apply_along_axis
to apply np.convolve
along the desired axis. Here is an example of applying a boxcar filter to a 2d array:
import numpy as np
a = np.arange(10)
a = np.vstack((a,a)).T
filt = np.ones(3)
np.apply_along_axis(lambda m: np.convolve(m, filt, mode='full'), axis=0, arr=a)
This is an easy way to generalize many functions that don't have an axis
argument.