Recently I have been trying to train n-gram entities with Stanford Core NLP. I have followed the following tutorials - http://nlp.stanford.edu/software/crf-faq.shtml#b
With this, I am able to specify only unigram tokens and the class it belongs to. Can any one guide me through so that I can extend it to n-grams. I am trying to extract known entities like movie names from chat data set.
Please guide me through in case I have mis-interpretted the Stanford Tutorials and the same can be used for the n-gram training.
What I am stuck with is the following property
#structure of your training file; this tells the classifier
#that the word is in column 0 and the correct answer is in
#column 1
map = word=0,answer=1
Here the first column is the word (unigram) and the second column is the entity, for example
CHAPTER O
I O
Emma PERS
Woodhouse PERS
Now that I need to train known entities (say movie names) like Hulk, Titanic etc as movies, it would be easy with this approach. But in case I need to train I know what you did last summer or Baby's day out, what is the best approach ?
It had been a long wait here for an answer. I have not been able to figure out the way to get it done using Stanford Core. However mission accomplished. I have used the LingPipe NLP libraries for the same. Just quoting the answer here because, I think someone else could benefit from it.
Please check out the Lingpipe licencing before diving in for an implementation in case you are a developer or researcher or what ever.
Lingpipe provides various NER methods.
1) Dictionary Based NER
2) Statistical NER (HMM Based)
3) Rule Based NER etc.
I have used the Dictionary as well as the statistical approaches.
First one is a direct look up methodology and the second one being a training based.
An example for the dictionary based NER can be found here
The statstical approach requires a training file. I have used the file with the following format -
<root>
<s> data line with the <ENAMEX TYPE="myentity">entity1</ENAMEX> to be trained</s>
...
<s> with the <ENAMEX TYPE="myentity">entity2</ENAMEX> annotated </s>
</root>
I then used the following code to train the entities.
import java.io.File;
import java.io.IOException;
import com.aliasi.chunk.CharLmHmmChunker;
import com.aliasi.corpus.parsers.Muc6ChunkParser;
import com.aliasi.hmm.HmmCharLmEstimator;
import com.aliasi.tokenizer.IndoEuropeanTokenizerFactory;
import com.aliasi.tokenizer.TokenizerFactory;
import com.aliasi.util.AbstractExternalizable;
@SuppressWarnings("deprecation")
public class TrainEntities {
static final int MAX_N_GRAM = 50;
static final int NUM_CHARS = 300;
static final double LM_INTERPOLATION = MAX_N_GRAM; // default behavior
public static void main(String[] args) throws IOException {
File corpusFile = new File("inputfile.txt");// my annotated file
File modelFile = new File("outputmodelfile.model");
System.out.println("Setting up Chunker Estimator");
TokenizerFactory factory
= IndoEuropeanTokenizerFactory.INSTANCE;
HmmCharLmEstimator hmmEstimator
= new HmmCharLmEstimator(MAX_N_GRAM,NUM_CHARS,LM_INTERPOLATION);
CharLmHmmChunker chunkerEstimator
= new CharLmHmmChunker(factory,hmmEstimator);
System.out.println("Setting up Data Parser");
Muc6ChunkParser parser = new Muc6ChunkParser();
parser.setHandler( chunkerEstimator);
System.out.println("Training with Data from File=" + corpusFile);
parser.parse(corpusFile);
System.out.println("Compiling and Writing Model to File=" + modelFile);
AbstractExternalizable.compileTo(chunkerEstimator,modelFile);
}
}
And to test the NER I used the following class
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.Set;
import com.aliasi.chunk.Chunk;
import com.aliasi.chunk.Chunker;
import com.aliasi.chunk.Chunking;
import com.aliasi.util.AbstractExternalizable;
public class Recognition {
public static void main(String[] args) throws Exception {
File modelFile = new File("outputmodelfile.model");
Chunker chunker = (Chunker) AbstractExternalizable
.readObject(modelFile);
String testString="my test string";
Chunking chunking = chunker.chunk(testString);
Set<Chunk> test = chunking.chunkSet();
for (Chunk c : test) {
System.out.println(testString + " : "
+ testString.substring(c.start(), c.end()) + " >> "
+ c.type());
}
}
}
Code Courtesy : Google :)