I am using mxnet to train a 11-class image classifier. I am observing a weird behavior training accuracy was increasing slowly and went upto 39% and in next epoch it went down to 9% and then it stays close to 9% for rest of the training. I restarted the training with saved model (with 39% training accuracy) keeping all other parameter same . Now training accuracy is increasing again. What can be the reason here ? I am not able to understand it . And its getting difficult to train the model this way as it requires me to see training accuracy values constantly.
learning rate is constant at 0.01
as you can see your late accuracy is near random one. there is 2 common issue in this kind of cases.