Flow based routing and openflow

jcsf picture jcsf · Dec 24, 2010 · Viewed 7.1k times · Source

This may not be the typical stackoverflow question.

A colleague of mine has been speculating that flow-based routing is going to be the next big thing in networking. Openflow provides the technology to use low cost switches in large application, IT data-centers, etc; replacing Cisco, HP, etc switch and routers. The theory is that you can create a hierarchy these openflow switches with simple configuration, eg. no spanning tree. Open flow will route each flow to the appropriate switch/switch-port, using only the knowledge of the hierarchy of switches (no routers). The solution is suppose to save enterprises money and simplify networking.

Q. He is speculating that this may dramatically change enterprise networking. For many reasons, I am skeptical. I would like to hear your thoughts.

Answer

Nathan Farrington picture Nathan Farrington · Dec 26, 2010

OpenFlow is a research project from Stanford University led by professor Nick McKeown. In the original OpenFlow research paper, the goal of OpenFlow was to give researchers a way "to run experimental protocols in the networks they use every day." For years networking researchers have had an almost impossible task deploying and evaluating their ideas on real networks with real Ethernet switches and IP routers. The difficultly is that real switches and routers from companies like Cisco, HP, and others, are all closed, proprietary boxes that implement standard "protocols", like Ethernet spanning tree, and OSPF. There are business reasons why Cisco and HP won't let you run software on their switches and routers; there is no technical reason. OpenFlow was invented to solve a people problem: if Cisco is not willing to let you run code on their switch, maybe they can at least provide a very narrow interface to let you remotely configure their switch, and that narrow interface is called OpenFlow.

To my knowledge more than a dozen companies are currently implementing OpenFlow support for their switches. Some like HP are only providing the OpenFlow software for research purposes. Others like NEC are actually offering commercial support.

For academic researchers that want to evaluate new routing protocols in real networks, OpenFlow is a huge win. For switch vendors, it is less clear if OpenFlow support will help, hurt, or have no effect in the long run. After all, the academic research market is very small.

The reason why OpenFlow is most often discussed in the context of enterprise networks is that OpenFlow grew out of a previous research project called Ethane that used OpenFlow's mechanism of remotely programming switches in an enterprise network in order to centralize a security policy. Ethane, and by extension OpenFlow, has led directly to two startup companies: Nicira, founded by Martin Casado, and Big Switch Networks, founded by Guido Appenzeller. It would be easier to implement an Ethane-like system if all of the switches in the network supported OpenFlow.

Closely related to enterprise networks are data center networks, the networks that interconnect thousands to tens of thousands of servers in companies such as Google, Facebook, Microsoft, Amazon.com, and Yahoo!. One problem with Ethernet is that it does not scale to this many servers on the same Layer 2 network. We attempted to solve this problem in a research project called PortLand. We used OpenFlow to facilitate programming the switches from a central controller, which we called a Fabric Manager. We released the PortLand source code as open source.

However, we also found a limitation to OpenFlow's functionality. In another data center networking research project called Helios, we were not able to use OpenFlow because it did not provide a mechanism for bonding multiple switch ports into a Link Aggregation Group (LAG). Presumably one could extend the OpenFlow specification indefinitely until it all possible switch features become exposed.

There are other networks as well such as the Internet access networks, Internet backbones, home networks, wireless networks, cellular networks, etc. Researchers are trying to see where OpenFlow fits into all of these markets. What it really comes down to is the question, "what problem does OpenFlow solve?" Ethane makes a case for enterprise networks but I have not yet seen a compelling case for any other type of network. OpenFlow might be the next big thing, or it might end up being a case of "don't solve a people problem with a technical solution."