I know that LIBSVM only allows one-vs-one classification when it comes to multi-class SVM. However, I would like to tweak it a bit to perform one-against-all classification. I have tried to perform one-against-all below. Is this the correct approach?
The code:
TrainLabel;TrainVec;TestVec;TestLaBel;
u=unique(TrainLabel);
N=length(u);
if(N>2)
itr=1;
classes=0;
while((classes~=1)&&(itr<=length(u)))
c1=(TrainLabel==u(itr));
newClass=c1;
model = svmtrain(TrainLabel, TrainVec, '-c 1 -g 0.00154');
[predict_label, accuracy, dec_values] = svmpredict(TestLabel, TestVec, model);
itr=itr+1;
end
itr=itr-1;
end
I might have done some mistakes. I would like to hear some feedback. Thanks.
Second Part: As grapeot said : I need to do Sum-pooling (or voting as a simplified solution) to come up with the final answer. I am not sure how to do it. I need some help on it; I saw the python file but still not very sure. I need some help.
%# Fisher Iris dataset
load fisheriris
[~,~,labels] = unique(species); %# labels: 1/2/3
data = zscore(meas); %# scale features
numInst = size(data,1);
numLabels = max(labels);
%# split training/testing
idx = randperm(numInst);
numTrain = 100; numTest = numInst - numTrain;
trainData = data(idx(1:numTrain),:); testData = data(idx(numTrain+1:end),:);
trainLabel = labels(idx(1:numTrain)); testLabel = labels(idx(numTrain+1:end));
%# train one-against-all models
model = cell(numLabels,1);
for k=1:numLabels
model{k} = svmtrain(double(trainLabel==k), trainData, '-c 1 -g 0.2 -b 1');
end
%# get probability estimates of test instances using each model
prob = zeros(numTest,numLabels);
for k=1:numLabels
[~,~,p] = svmpredict(double(testLabel==k), testData, model{k}, '-b 1');
prob(:,k) = p(:,model{k}.Label==1); %# probability of class==k
end
%# predict the class with the highest probability
[~,pred] = max(prob,[],2);
acc = sum(pred == testLabel) ./ numel(testLabel) %# accuracy
C = confusionmat(testLabel, pred) %# confusion matrix