I am trying to convert an image from cartesian to polar coordinates.
I know how to do it explicitly using for loops, but I am looking for something more compact.
I want to do something like:
[x y] = size(CartImage);
minr = floor(min(x,y)/2);
r = linspace(0,minr,minr);
phi = linspace(0,2*pi,minr);
[r, phi] = ndgrid(r,phi);
PolarImage = CartImage(floor(r.*cos(phi)) + minr, floor(r.sin(phi)) + minr);
But this obviously doesn't work.
Basically I want to be able to index the CartImage on a grid.
The polar image would then be defined on the grid.
given a matrix M (just a 2d Gaussian for this example), and a known origin point (X0,Y0) from which the polar transform takes place, we expect that iso-intensity circles will transform to iso-intensity lines:
M=fspecial('gaussian',256,32); % generate fake image
X0=size(M,1)/2; Y0=size(M,2)/2;
[Y X z]=find(M);
X=X-X0; Y=Y-Y0;
theta = atan2(Y,X);
rho = sqrt(X.^2+Y.^2);
% Determine the minimum and the maximum x and y values:
rmin = min(rho); tmin = min(theta);
rmax = max(rho); tmax = max(theta);
% Define the resolution of the grid:
rres=128; % # of grid points for R coordinate. (change to needed binning)
tres=128; % # of grid points for theta coordinate (change to needed binning)
F = TriScatteredInterp(rho,theta,z,'natural');
%Evaluate the interpolant at the locations (rhoi, thetai).
%The corresponding value at these locations is Zinterp:
[rhoi,thetai] = meshgrid(linspace(rmin,rmax,rres),linspace(tmin,tmax,tres));
Zinterp = F(rhoi,thetai);
subplot(1,2,1); imagesc(M) ; axis square
subplot(1,2,2); imagesc(Zinterp) ; axis square
getting the wrong (X0,Y0) will show up as deformations in the transform, so be careful and check that.