Mapping A Sphere To A Cube

petrocket picture petrocket · Apr 17, 2010 · Viewed 15.6k times · Source

There is a special way of mapping a cube to a sphere described here: http://mathproofs.blogspot.com/2005/07/mapping-cube-to-sphere.html

It is not your basic "normalize the point and you're done" approach and gives a much more evenly spaced mapping.

I've tried to do the inverse of the mapping going from sphere coords to cube coords and have been unable to come up the working equations. It's a rather complex system of equations with lots of square roots.

Any math geniuses want to take a crack at it?

Here's the equations in c++ code:

sx = x * sqrtf(1.0f - y * y * 0.5f - z * z * 0.5f + y * y * z * z / 3.0f);

sy = y * sqrtf(1.0f - z * z * 0.5f - x * x * 0.5f + z * z * x * x / 3.0f);

sz = z * sqrtf(1.0f - x * x * 0.5f - y * y * 0.5f + x * x * y * y / 3.0f);

sx,sy,sz are the sphere coords and x,y,z are the cube coords.

Answer

petrocket picture petrocket · Apr 23, 2010

I want to give gmatt credit for this because he's done a lot of the work. The only difference in our answers is the equation for x.

To do the inverse mapping from sphere to cube first determine the cube face the sphere point projects to. This step is simple - just find the component of the sphere vector with the greatest length like so:

// map the given unit sphere position to a unit cube position
void cubizePoint(Vector3& position) {
    double x,y,z;
    x = position.x;
    y = position.y;
    z = position.z;

    double fx, fy, fz;
    fx = fabsf(x);
    fy = fabsf(y);
    fz = fabsf(z);

    if (fy >= fx && fy >= fz) {
        if (y > 0) {
            // top face
            position.y = 1.0;
        }
        else {
            // bottom face
            position.y = -1.0;
        }
    }
    else if (fx >= fy && fx >= fz) {
        if (x > 0) {
            // right face
            position.x = 1.0;
        }
        else {
            // left face
            position.x = -1.0;
        }
    }
    else {
        if (z > 0) {
            // front face
            position.z = 1.0;
        }
        else {
            // back face
            position.z = -1.0;
        }
    }
}

For each face - take the remaining cube vector components denoted as s and t and solve for them using these equations, which are based on the remaining sphere vector components denoted as a and b:

s = sqrt(-sqrt((2 a^2-2 b^2-3)^2-24 a^2)+2 a^2-2 b^2+3)/sqrt(2)
t = sqrt(-sqrt((2 a^2-2 b^2-3)^2-24 a^2)-2 a^2+2 b^2+3)/sqrt(2)

You should see that the inner square root is used in both equations so only do that part once.

Here's the final function with the equations thrown in and checks for 0.0 and -0.0 and the code to properly set the sign of the cube component - it should be equal to the sign of the sphere component.

void cubizePoint2(Vector3& position)
{
    double x,y,z;
    x = position.x;
    y = position.y;
    z = position.z;

    double fx, fy, fz;
    fx = fabsf(x);
    fy = fabsf(y);
    fz = fabsf(z);

    const double inverseSqrt2 = 0.70710676908493042;

    if (fy >= fx && fy >= fz) {
        double a2 = x * x * 2.0;
        double b2 = z * z * 2.0;
        double inner = -a2 + b2 -3;
        double innersqrt = -sqrtf((inner * inner) - 12.0 * a2);

        if(x == 0.0 || x == -0.0) { 
            position.x = 0.0; 
        }
        else {
            position.x = sqrtf(innersqrt + a2 - b2 + 3.0) * inverseSqrt2;
        }

        if(z == 0.0 || z == -0.0) {
            position.z = 0.0;
        }
        else {
            position.z = sqrtf(innersqrt - a2 + b2 + 3.0) * inverseSqrt2;
        }

        if(position.x > 1.0) position.x = 1.0;
        if(position.z > 1.0) position.z = 1.0;

        if(x < 0) position.x = -position.x;
        if(z < 0) position.z = -position.z;

        if (y > 0) {
            // top face
            position.y = 1.0;
        }
        else {
            // bottom face
            position.y = -1.0;
        }
    }
    else if (fx >= fy && fx >= fz) {
        double a2 = y * y * 2.0;
        double b2 = z * z * 2.0;
        double inner = -a2 + b2 -3;
        double innersqrt = -sqrtf((inner * inner) - 12.0 * a2);

        if(y == 0.0 || y == -0.0) { 
            position.y = 0.0; 
        }
        else {
            position.y = sqrtf(innersqrt + a2 - b2 + 3.0) * inverseSqrt2;
        }

        if(z == 0.0 || z == -0.0) {
            position.z = 0.0;
        }
        else {
            position.z = sqrtf(innersqrt - a2 + b2 + 3.0) * inverseSqrt2;
        }

        if(position.y > 1.0) position.y = 1.0;
        if(position.z > 1.0) position.z = 1.0;

        if(y < 0) position.y = -position.y;
        if(z < 0) position.z = -position.z;

        if (x > 0) {
            // right face
            position.x = 1.0;
        }
        else {
            // left face
            position.x = -1.0;
        }
    }
    else {
        double a2 = x * x * 2.0;
        double b2 = y * y * 2.0;
        double inner = -a2 + b2 -3;
        double innersqrt = -sqrtf((inner * inner) - 12.0 * a2);

        if(x == 0.0 || x == -0.0) { 
            position.x = 0.0; 
        }
        else {
            position.x = sqrtf(innersqrt + a2 - b2 + 3.0) * inverseSqrt2;
        }

        if(y == 0.0 || y == -0.0) {
            position.y = 0.0;
        }
        else {
            position.y = sqrtf(innersqrt - a2 + b2 + 3.0) * inverseSqrt2;
        }

        if(position.x > 1.0) position.x = 1.0;
        if(position.y > 1.0) position.y = 1.0;

        if(x < 0) position.x = -position.x;
        if(y < 0) position.y = -position.y;

        if (z > 0) {
            // front face
            position.z = 1.0;
        }
        else {
            // back face
            position.z = -1.0;
        }
    }

So, this solution isn't nearly as pretty as the cube to sphere mapping, but it gets the job done!

Any suggestions to improve the efficiency or read ability of the code above are appreciated!

--- edit --- I should mention that I have tested this and so far in my tests the code appears correct with the results being accurate to at least the 7th decimal place. And that was from when I was using floats, it's probably more accurate now with doubles.

--- edit --- Here's an optimized glsl fragment shader version by Daniel to show that it doesn't have to be such a big scary function. Daniel uses this to filter sampling on cube maps! Great idea!

const float isqrt2 = 0.70710676908493042;

vec3 cubify(const in vec3 s)
{
float xx2 = s.x * s.x * 2.0;
float yy2 = s.y * s.y * 2.0;

vec2 v = vec2(xx2 – yy2, yy2 – xx2);

float ii = v.y – 3.0;
ii *= ii;

float isqrt = -sqrt(ii – 12.0 * xx2) + 3.0;

v = sqrt(v + isqrt);
v *= isqrt2;

return sign(s) * vec3(v, 1.0);
}

vec3 sphere2cube(const in vec3 sphere)
{
vec3 f = abs(sphere);

bool a = f.y >= f.x && f.y >= f.z;
bool b = f.x >= f.z;

return a ? cubify(sphere.xzy).xzy : b ? cubify(sphere.yzx).zxy : cubify(sphere);
}