While working on SVG implementation for Internet Explorer to be based on its own VML format I came to a problem of translation of an SVG elliptical arc to an VML elliptical arc.
In VML an arc is given by: two angles for two points on ellipse and lengths of radiuses, In SVG an arc is given by: two pairs of coordinates for two points on ellipse and sizes of ellipse boundary box
So, the question is: How to express angles of two points on ellipse to two pairs of their coordinates. An intermediate question could be: How to find the center of an ellipse by coordinates of a pair of points on its curve.
Update: Let's have a precondition saying that an ellipse is normally placed (its radiuses are parallel to linear coordinate system axis), thus no rotation is applied.
Update: This question is not related to svg:ellipse element, rather to "a" elliptical arc command in svg:path element (SVG Paths: The elliptical arc curve commands)
So the solution is here:
The parametrized formula of an ellipse:
x = x0 + a * cos(t) y = y0 + b * sin(t)
Let's put known coordinates of two points to it:
x1 = x0 + a * cos(t1) x2 = x0 + a * cos(t2) y1 = y0 + b * sin(t1) y2 = y0 + b * sin(t2)
Now we have a system of equations with 4 variables: center of ellipse (x0/y0) and two angles t1, t2
Let's subtract equations in order to get rid of center coordinates:
x1 - x2 = a * (cos(t1) - cos(t2)) y1 - y2 = b * (sin(t1) - sin(t2))
This can be rewritten (with product-to-sum identities formulas) as:
(x1 - x2) / (2 * a) = sin((t1 + t2) / 2) * sin((t1 - t2) / 2) (y2 - y1) / (2 * b) = cos((t1 + t2) / 2) * sin((t1 - t2) / 2)
Let's replace some of the equations:
r1: (x1 - x2) / (2 * a) r2: (y2 - y1) / (2 * b) a1: (t1 + t2) / 2 a2: (t1 - t2) / 2
Then we get simple equations system:
r1 = sin(a1) * sin(a2) r2 = cos(a1) * sin(a2)
Dividing first equation by second produces:
a1 = arctan(r1/r2)
Adding this result to the first equation gives:
a2 = arcsin(r2 / cos(arctan(r1/r2)))
Or, simple (using compositions of trig and inverse trig functions):
a2 = arcsin(r2 / (1 / sqrt(1 + (r1/r2)^2)))
or even more simple:
a2 = arcsin(sqrt(r1^2 + r2^2))
Now the initial four-equations system can be resolved with easy and all angles as well as eclipse center coordinates can be found.