Unsupervised Sentiment Analysis

Trindaz picture Trindaz · Oct 13, 2010 · Viewed 28.8k times · Source

I've been reading a lot of articles that explain the need for an initial set of texts that are classified as either 'positive' or 'negative' before a sentiment analysis system will really work.

My question is: Has anyone attempted just doing a rudimentary check of 'positive' adjectives vs 'negative' adjectives, taking into account any simple negators to avoid classing 'not happy' as positive? If so, are there any articles that discuss just why this strategy isn't realistic?

Answer

Fred Foo picture Fred Foo · Oct 14, 2010

A classic paper by Peter Turney (2002) explains a method to do unsupervised sentiment analysis (positive/negative classification) using only the words excellent and poor as a seed set. Turney uses the mutual information of other words with these two adjectives to achieve an accuracy of 74%.